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The Pattern Analysis in the Marine Environment (PANE) Workshop Proceedings
contains ten of the papers presented at an Ocean Science and Technology Workshopsponsored by the Chief of Naval Research and hosted by the Naval Ocean Research and

Development Activity, NSTL, Mississippi, 24-26 March 1982.

LPANE Workshop topics ranged from computer science, pattern analysis, and
artifical intelligence to specific problem areas, applications, and requirements
in ocean science. The workshop was organized in the following five sessions:

2- Image Analysis Techniques I;
. Image Analysis Techniques II;

-' Pattern Analysis Techniques;
a * Space Technology for Ocean Applications;
-Ocean Patterns in Space-Time.

A number of presentations were informal and tutorial in nature. An abstract of all
presentations is included, along with a complete list of attendees.
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These Pattern Analysis in the Marine Environment (PANE) Workshop Proceedings

are part of an overall program sponsored by the Chief of Naval Research and hosted
by the Naval Ocean Research and Development Activity (NORDA). The project was funded
by Program Element 61153N. The purpose of these Ocean Science and Technology
Workshops is to bring together members of the government, academic, and industrial
communities to focus attention on specific issues of interest to the Navy.

The PANE Workshop chairman would like to express his special appreciation to
*the NORDA Technical Director, Dr. James E. Andrews, for his encouragement and

support of the PANE Workshop and for presenting the Keynote Address and to all the
., authors, presentors, and PANE participants. Administrative activities of the

workshop were coordinated through the University of Southern Mississippi under
the direction of Myron Webb.
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SPONSORED by the Chief of Naval Research and hosted by the Naval Ocean Research and
Development Activity (NORDA), this workship was one in a series of ocean science
workshops held to highlight areas of significance to the Navy.

GOAL: The intent of the PANE Workshop was to provide a forum for expert discussionsLof (1) pattern analysis (PA) applications, requirements, and problems by the ocean
science community, (2) tools available within the computer science and artifical
intelligence (AI) areas, and (3) concrete interaction between these two fields.

WORKSHOP PHILOSOPHY: The marine science coimmunity was urged to present (1) examples
* ~- of its work that employ PA techniques and (2) formulate ocean science problems in

careful (and concrete) terms so that other participants, both Al/computer scientists
and ocean scientists, could consider these PA requirements and interact with them byL discussing potential solution areas, similar examples from other fields, and by
absorbing these needs and formulating new areas for R&D in PA to support such ocean
environmental tasks.

-- On the part of the PA and AI communities, efforts were made to consider the very
difficult "real world" problems in PAME and to illustrate and present potentialF: tools/techniques that could be applied to these areas in the near to intermediate

* term. This guideline applied especially to problem and "feature" definition and
evaluation procedures but also to classification schemes. Thus an attempt was made
to emphasize current state-of-the-art, as it is available to the marine community,
in contrast to R&D challenges and problems in the AI or PA fields for their own
sake.

With increasing performance and requirements of ocean science information systems
(0515), the NAVY is faced with greater demands for pattern analysis and information
extraction techniques to help solve its operation problems as well as advance its
tech base science programs. It is hoped that interaction at the PAME Workshop
contributed and fostered such technology and requirements tranfer between these two
communities. To this end, the participants to the workshop were invited from diverse

r fields of interests and an informal environment for information exchange was
encouraged.
WORKSHOP FORMAT: There were five half-day (3 hour) sessions in the workshop. Each

* session had from three to five speakers and ample time for discussion both of the
details of a given presentation and the themes that grew out of the talks in that
session. Appendix A contains the original PANE Agenda. Approximately one hour was

... set aside for this type of informal interchange with the session speakers acting as
catalysts/panel where appropriate. The workshop was limited in attendance to
approximately 50 persons to accomodate the format described above and because of the
size of the River House facility. Approximately half of the participants presented

L. papers.

PRESENTATIONS AND PROCEEDINGS: The presentations varied in length from 15-45 minutes
with 30 minutes being typical. They included outlines of ongoing investigations of
interest to the marine scientists, current PANE problem areas, topics for new
research, and tutorials on specialized AI subjects. A brief abstract of each
presentation was available in the PAME Abstract Booklet before the workshop began.

* ~ These original abstracts are reproduced in Appendix B. These PAME Proceedings

document some of the information exchange at the workshop and point to and clarify



areas for future R&D and application of Pattern Analysis in the Marine Environment
k by both ocean and PA scientists.

OTHER ACTIVITIES: A long lunch hour was held on both Wednesday and Thursday outside
*under the trees" at the pavillion near the River House. Again, this approach was
designed to encourage continuation of informal exchange between the participants.
Two evening meal functions were also included in the agenda. The workshop adjourned
on noon Friday to allow participants to catch afternoon flights or to visit the Gulf
Coast and New Orleans areas.

ROBERT M. BROWN, CHAIRMAN P
Ocean Science and Technology Workshop
PATTERN ANALYSIS IN THE MARINE ENVIRONMENT -

.S



Cluster Analysis Package For Image Segmentation 1
M. F. Janowl tz ,, ..p" ....

Fourier Shape Analysis: A Multivariate Pattern Recognition 47
Approach 4 ) - P I / d I- ,
Robert Ehrlich and William E. Full

Fuzzy Algorithms for Pattern Recognition 69
James C. Bezdek 4 ') -/P. f Y -Y 7

The Use of Satellite Observations of the Ocean Science in 121
Commercial Fishing Operations
R. D. Montgomery A d -/h%, -. Z,

Digitally Controlled Sonars 157George R. Hansen ./ d- FP" e - j - -

Application of Computer Image Processing to Underwater 173
Surveys
Peter R. Paluzzi mL P& '

The Identification and Inversion of Acoustic Multipath Data 189
at Long Range in the Ocean
Michael G. Brown i/)-/ 1 -. 3

Principal Components as a Method for Atmospherically 199
Correcting Coastal Zone Color Scanner DataRonald J. Holyer ,y- iPef e . /

Water Mass Classification in the North Atlantic Using IR 225

Digital Data and Bayesian Decision Theory
([ Robert E. Coulter 49- /P1

Spatial Image Processing Masks from Frequency Domain 237
Specifications
E. R. Meyer and R. C. Gonzalez / Z) c .2

APPENDIX A: Agenda 249

APPENDIX B: Abstracts 253

APPENDIX C: List of Attendees 279

, -.

I..



* ~cluster AnalyssPckg&o Impg Segmentato
I M. F. Janowitz

Department of Mathematics and Statistics
% University of Massachusetts

Amiherst, M4A 01003

ABSTRACT

F' >-'A description is given of the underlying motivation and actual implemientation of a
number of cluster analysis algorithms that can be used for the segmentation of

Simages collected by remote sensing devices. The outputs of the various algorithms
are illustrated on both real and simulated data.

I. INTRODUCTION

cv Satellites tend to spew massive data sets back to us at an alarmingly rapid
rate. Because of the high initial investment both in the satellite and in the
euipment needed to transmit, receive and interpret this data, there is a natural
tendncyto collect and store everything that comes back to us. This createsoproblems in database management and data retrieval that will not be addressed here;

nonetheless, an indication will be given of the possible use of low resolution
Ssegmented images as efficient low cost means of summarizing large digital pictures.

The goal of this report is the description of a package of cluster analysis
algorithms that seem useful for the segmentation of monochromatic digital remote
sensing data. The work was done at four levels: underlying motivations, develop-
ment and implementation of algorithms, simulations, and real data analysis. The
present report is restricted to techniques that deal with a single feature, with
multiple feature selection to be investigated at a later date. Section II presents
the motivation for both the cluster techniques and the statistics they use, while
Section III contains a careful description of the techniques. In Section IV some
simulated data is analyzed, while Section V contains a description of the use of
low resolution pictures as summaries of large digital images. The remaining
section presents the results of the algorithms as applied to real data as well as
to real data with additive noise. The paper is based in part on work that was
reported in '4], and it will be useful to consult that reference in connection with
the current paper.

II. BASIC ASSUMPTIONS

Here is a list of the assumptions that underly all of the cluster algorithms.
They are based largely on the work of Bryant [1] and Coleman and Andrews [2],

-:. p. 775.

Al. The input data consists of an m x n matrix A, each of whose entries is a
positive integer.

A2. There is an underlying function F defined on a rectangular region of a
Cartesian plane. This function might represent temperature, brightness, or some

eA.



other attribute of the plane. Thus F is a real-valued function whose domain is

closed rectangle of the form {(x,y): a < x < b, c < y < d) for fixed real

A3. There is a natural division of the domain of F into a finite number of

regions R1R29.. 9R t. Each such region is connected, has a smooth boundary, and
ca echaracterized by the values of F. It might be that the regions R. correspond

meaureappiedto F, or possibly some cormbination of features of F.

A4.Theobserver has no direct knowledge of the number of regions, their
location, or the values of F within a given region. There is, however, knowledge
of the manner in which the regions are characterized by F. Nonetheless, the
observer has no direct knowledge of any of the values of F.

A5. Each entry of the input matrix A is the result of an estimate of F by a
sensing device that introduces errors in at least three ways. First of all, the
device produces an average value of F over a small subregion of the plane. Thus
the device produces a function with finite domain, each of whose values corresponds
to the average value of F over a suitable subregion of the plane, with adjacent
values of the device corresponding to adjacent subregions. Secondly, there is
additive noise associated with the process by which the device reads the values of
F. Thirdly, the device discretizes its output by rounding it off to the nearest
integer. This can all be succintly summarized by the mathematical assertion that
the values of the input matrix A correspond to values of a random variable

V,

G = NINT (T~ + N)

where F is the function with finite domain obtained by averaging F over suitable
subregions, and N is a random noise variable whose restriction to region R1 has
expected value 0 and variance 2. with NINT denoting the function that rounds a
real number to the integer to which it is closest. No further assumptions are made
about the distribution of N. It is assumed that G has spatial significance in that
adjacent values of G correspond to adjacent regions of the plane.

A6. Near the boundary of a region, the sensing device will sometimes beTaveraging values of F from more than one region. This can produce values of F
hence of G, that do not seem to belong to any of the regions in question. These
boundary points may appear to represent a region of their own, or may even seem
to belong to some other region of the plane that is not located near the boundary
in question.

A7. The input data A has only ordinal significance.

0: Assumption A7 will not always be made, but when it is made, an appropriate
model for image segmentation is provided by the notion of a partially ordered
partition of the domain of F. This is a pair (P,< where P is a partition of the
domain, and <a partial order on the equivalence classes of P. A start to the
investigation of these objects appears in (41, and further work is currently in
progress. In any event, the image segmentation problem within the context of the
above assumptions may now be given a precise formulation:



IMAGE SEGMENTATION PROBLEM. Given the values of the input random variable G,
together with wihatever information is available concerning the noise variable N and
the manner in which the underlying regions are determined by F, estimate the number

of regions t, their location, and the value(s) of F that determine each region.

In the next section several image segmentation algorithms will be described.
The underlying philosophy is quite simple, and in summnary asserts two things:
(1) Before attempting a complicated algorithm, one should at least investigate the
simple ones. (2) When looking for a needle in a hay stack, it is reasonable to

~ look for needle-shaped objects. When stated in the above form, the philosophy
appears rather superficial. The point though is that if a simple straightforward
algorithm will work, why try anything more complicated? Considerations such as
computer time and relation of the input to the output data are naturally involved
here.

The algorithms will all involve both the values of the input matrix A and
their spatial distribution. In order to motivate the discussion of the next
section, let us consider a simple statistical model. Suppose that the input data
represents 2 regions, X and Y. Suppose further that the variable N is independ-
ently distributed. One can therefore assume that there is a probability p that an
interior member of X will have probability p of being assigned to Y, and conversely,
an interior member of Y will have probability p of being assigned to X, with these
probabilities being independent. In view of A6, boundary points would naturally
have a higher probability of being misclassified. In any event, if A is an m by n
matrix, one would expect that at least pmn points would be misclassified. Let us
see what happens, however, if the classification of a point is based in part on
the classification of its neighbors. More specifically, let us consider a 3 by 3
neighborhood centered on an interior point of X. Assuming all 9 points in the
neighborhood belong to X, let us base the assignment of X on that of wherever 5
out of 9 points are assigned. This rule will in the sequel be referred to as the
5/9 rule. If B(p;9,k) represents the binomial probability that k out of the 9
points have been assigned to Y, then the probability of misclassifying the given! point is evidently

B(p;9,5)+B(p;9,6)+B(p;9,7)+B(p;9,8)+B(p;9,9).

For a k by k tRighborhood (k an odd integer), one would use a j/k2 rule, where

j =(k2+ 1)12. The only other rule that will be considered will be the 3/5 rule,
and this refers to a decision based upon the point and its 4 immediate neighbors

also based upon the binomial distribution. Table 1 illustrates how the probabili-
tiesof iscassfictio ca beimproved by the use of such decision rules.

Though it is clear that larger windows decrease the probability of misclassification
of interior points, it should be noted that larger windows also tend to include
points that are not in the given cluster, and this can tend to produce errors. An
indication of this effect occurs in Table 2.

To illustrate the calculation of the probabilities in Table 2, let us consider
the 5/9 rule with I point from another cluster. Specifically, it will be assumed

* that the given point and 7 of its neighbors belong to X and that a single neighbor
is in Y. We want the probability that at least 5 out of the 9 points will be put

* in X by the input matrix A. The roint in Y will have probability 1- p of being

7 3



Probability of misclassification
Rule .1 .2 .3 .35 .4 .5 .46 .47 .4

*3/5 .009 .058 .163 .235 .317 .407 .425 .444 .463

5/9 .001 .020 .099 .172 .267 .379 .402 .427 .451

13/25 0 0 .018 .060 .154 .306 .343 .381 .420

25/49 0 0 .002 .015 .078 .280 .287 .336 .389

41/81 0 0 0 .003 .034 .183 .235 .294 .359

61/121 0 0 0 0 .013 .135 .189 .254 .330

85/169 0 0 0 0 .004 .096 .148 .217 .3011

Table 1. Probability of misclassifying interior points
using various spatial rules. See text for explanation
of the rules. Each probability is rounded to 3 places.
The top row gives the probability of misclassifying an
individual pixel.

OtherTPriobability of misclassification
Rule Cluster .1 .2 .3 .35 .4 .45 .46 .47 .48-

3/5 1 .047 .150 .269 .328 .387 .444 .455 .466 .477

2 .225 .346 .415 .440 .461 .481 .485 .489 .492

5/9 1 .005 .047 .153 .228 .313 .405 .424 .443 .462

2 .021 .106 .228 .295 .363 .432 .445 .459 .473

3 .087 .216 .325 .373 .417 .459 .467 .475 .484

4 .293 .392 .439 .457 .472 .486 .489 .492 .497

13/25 1 0 .001 .025 .076 .174 .321 .355 .390 .426

2 0 .002 .036 .095 .195 .335 .367 .399 .433

3 0 .004 .051 .117 .218 .350 .379 .409 .439
4 0 .008 .071 .143 .243 .365 .391 .418 .445

5 0 .015 .096 .172 .269 .380 .404 .428 .452
6 .001 .029 .128 .206 .296 .396 .417 .437 .458

Table 2. Probability of misclassifying boundary points using
various spatial rules. See text for explanation of the rules.
The "Other Cluster" column gives the number of points in the
neighborhood that do not belong to the cluster under consideration.



g
: Iclassified in Y and probability p of being put in X. Thus the desired probability

is given by

(1-p)[B(p;8,5)+ B(p;8,6)+ B(p;8,7)+ B(p;8,8)] +

p[B(p;8,4) + B(p;8,5) + B(p;8,6) + B(p;8,7) + B(p;8,8)].

Hopefully, what will make the algorithms work is the fact that the number of

boundary points is small relative to the number of interior points, so that the
rather dramatic increase in probability of misclassification shown in Table 2 will

-not really have too much effect. To illustrate this, some simulations were tried
based upon the data in Figs. 1 and 2. Each of these data sets involves 2 input
clusters. White noise was added to each picture with the indicated signal to
noise ratio shown in Table 3. Here one can define the signal to noise ration as
the difference in mean values of the data in the 2 input clusters divided by the
standard deviation of the noise. For purposes of comparison, the simulations were
also run on data consisting entirely of interior points. The results are fairly

* consistent with the earlier theoretical results of Tables 1 and 2. The effect of
large windows on the classification of boundary points can be seen by examining
the data for the 13/25 decision rule. Note the higher probability of misclassifi-
cation for the data having a boundary as opposed to the same size data set of
interior points.

III. THE CLUSTERING ALGORITHMS

This section will contain a careful description of the algorithms that do the
image segmentation. Some of them are numeric and some ordinal, but they are all
variations on the same theme. They are based on the following items: (a) a pro-

U cedure for removing rarely occuring clusters; (b) a determination of the "scatter"
of each cluster; (c) a decision based upon scatter as to which clusters should be

, - removed; (d) a rule for reassigning the points that belong to clusters which are
.-removed; (e) a stopping rule. Accordingly, the discussion will break into a

number of sections. In all of this, it will be assumed that the input is an m by n
matrix A with integer values, and that the desired regions RI,... ,Rt are charac-

1 terized by having constant values of A over a connected spatial domain with a smooth
boundary.

A. PREFILTERS

A number of prefilters are available in the program.

1. k by k mean (k 3,5,7,...)

The value at each point of A is replaced by the mean of a k by k
neighborhood centered at that point. This mean is either rounded to the nearest
integer or to the nearest integer that happens to occur in A. For ordinal data,

A is rank ordered before applying the filter.

2. Special k by k mean

S.. This is identical to the k by k mean except that in each neighborhood
*. the j (j a parameter) highest and lowest values are first removed. This tends to

*reduce spot noise. A similar approach to this is described in J. S. Lee [6], and
it is planned to incorporate his sigma filter into the cluster package.

5
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Noise Decii With Boundary All interior points_

Data Ratio Rule MPean SD Mean sD
FT -g-T -T.75- No ne .2697 .0203 .2820 .0182

3/5 .1607 .0290 .1341 .0241-
5/9 .1233 .0247 .69 .0196

* .13/25 .0947 .014 .0035 .0030
1.00 None .3100 .0199 .3178 .0262

35 .28 .0336 .1935 .0377
5/ .178 .0271 .1256 .0276
13/25 .1381 .0272 .0333 .0217

--T.-6 None .3810 .0306 .3857 .0228
3/5 .3015 .0524 .2910 .0401
5/9 .2629 .0578 .2353 .0452

13/25 .2100 .0521 .1178 .0449
0.50 None .4-170 .02-65 .416 .0163

3/5 .3564 .0447 .3361 .0333
5/9 .3276 .0611 .2902 .0340
13/25 .2739 .0669 .1810 .0391

S None .4501 .0282 .4544 .0225
3/5 4153 .0513 .4108 .0399
5/9 .3987 .0652 .3737 .0532

13/25 .3619 .0744 .3048 .0883
F g.2 1.25 None .2751 .0194 .2979 .0118

3/5 .1491 .0297 .1620 .0197
..-. 5/9 .1000 .0241 .0945 .0197

13/25 .0482 .0125 .0118 .0068
1.00 None .3109 .0189 .3402 .0204

3/5 .1--2 .0245 .2179 .0274
5/9 .1389 .0265 .1481 .0265

13/25 .0644 .0162 .0386 .0187
0.67 None .3633 .0186 .3788 U009

3/5 .2744 .0262 .2836 .0141
5/9 .2186 .0331 .2225 .0223

13/25 .1238 .0289 .0913 .0206
0.50 None .41-04 .0160 481 .0232

3/5 .3419 .0314 .3607 .0377
5/9 .3003 .0296 .3172 .0530

____13/25 .2180 .0377 .2157 .0856
0725 None .4527 .0188 .4599 .0182

3/5 .4118 .0332 .4212 .0386
5/9 .3916 .0487 .4028 .0496

____13/25 .3393 .0461 .3496 .0662

Table 3. Simulated data based upon 10 trials. Entries
in the table are the probabilities of misclassification.
In the absence of any other decision rule, a nearest neighbor
rule is used. The probabilities under the "With Boundary"
heading relate to the actual data of Figs. 1 and 2, while the
other probabil1i ti es are based upon tri al s us ing the same random
noise, but with all points interior to a single region.
"Noise ratio" refers to the signal to noise ratio as defined
in the text.
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Fig. 2. Data set used for simulations shown in Table 3.
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3. Weighted k by k mean

This allows for weighting the points in a k by k neighborhood to take
into account the fact that more distant points should nothave the same effect as
closer ones.

4. k by k median

".4 This outputs the median value of a k by k neighborhood centered
around each point of A.

5. k y k mode

- >% The output of this filter is the most frequently occurring value within
a k by k neighborhood centered on each point. In case of a tie, the median of the
tied values is used.

B. THINOUT

The input here is the output of whatever prefilter is being used. It
begins by removing a border around the picture. The width of this border depends
upon the size of the window to be used in C. This function produces a preliminary
assignment of clusters based upon a histogram analysis. It does a frequency count
on the values occurring in the interior of A; i.e., those values that are not in the

- .-" removed border. It then removes those values that either occur entirely in the
border, or which do not have frequent occurrence. A parameter can be set so that
THINOUT renoves all but a certain number of clusters, or else all that have a

i frequency of occurrence that is below some fixed percentage of the total number of
-- points. The default setting is (.02)mn. Points are reassigned to the nearest

remaining value. For ordinal data one proceeds on ranks rather than on actual
values.

C. MEASURES OF DISPERSION

At this point the data has had a preliminary assignment to clusters. One
wants to establish a spatial criterion for the removal of clusters. Since the goal
is to produce connected subregions of the plane, the idea is to remove those

:, *:. clusters that are the most scattered on the basis that they are least likely to
lie entirely within one of the desired regions RI,... ,Rt. Though no assumption is

made directly as to the distribution of the values of F, the procedure is nonethe-
less based upon the distribution of a normal random variable. The closer a cluster
is to the expected value of one of the regions, the more likely it is to have a low
amount of scattering in + plane. Each of the measures of scatter looks at a
k by k window centered , a given pixel. For that reason the scatter cannot be
computed for the oute and columns, where j is the greatest positive integer
under k/2. This is n r that was mentioned at the beginning of B. Here
then are the various scatter that relate to a fixed cluster Ci.

1. Nondirected ui, ,ersion

,, For each point in Ci, one looks at a k by k neighborhood centered on

that point, and counts up the number of members of that neighborhood that are not

4, 9



in C1. One sums these numbers up over all points in Ci, and divides by the number

of neighborhoods times k2 - I to obtain the empirical probability that a point in C

will have a neighbor in a k by k neighborhood that does npt belong to Ci. This is

used as a measure of the scatter of the cluster C.

2. Rectangularly directed dispersion

The nondirected dispersion measure treats boundary points in much the
same way that it does noise. Thus if the cluster C. has a long boundary, it will
tend to have a high nondirected dispersion, even thsugh it may itself not be
scattered. One can compensate partially for this by looking at directional versions
of the dispersion measures. The idea is that noise should look like noise in all
directions, whereas boundary points of a cluster will have a direction in which
they do not appear noisy (the direction of the cluster to which they bound). This
measure is identical to the nondirected dispersion except that at each point in C

it takes the minimum of the number of points not in C in each of the 4 subregions V

of the k by k neighborhood lying to the North, South, East and West of the given
point.

3. Diagonally directed dispersion

This is the same as 2 except that the 4 directions chosen are the 4

diagonal directions.

4. Fully directed dispersion

Here the minimum is taken over all 8 directions.

Tables 4 through 7 illustrate the operation of the nondirected dispersion
in locating the expected value of a region Ci, given the output of G. Tables 4,5,

6 contain data based upon 3 by 3, 5 by 5, and 7 by 7 prefilters acting on Gaussian
noise, while the data in Table 7 comes from uniform noise. Note how the values of
the dispersion increase as one gets further away from the expected value of 0. The
prefilters that seem especially effective are called the MM1 and MMM filters. These
are 3 by 3 mean filters iterated twice and three times. These are examples of
weighted k by k filters. A careful description of them occurs in Janowitz [4] as
well as Rosenfeld and Kak [7].

D. THE CLUSTERINIG CYCLE

With the given input matrix A, all of the clustering algorithms follow the
same general format. There are two initial parameters CHOS and THRSH that will be
explained in the body of the description: -

1. Apply an appropriate prefilter to A, and let B denote its output.

2. Apply THINOUT to B. Here CHOS is the parameter that determines the
number of clusters that are outputted by THINOUT. At this point, we have pre-
liminary clusters CI,C 2,... ,C that are determined by the numbers clC 2,... ,cs.

The idea is that cluster C. consists of those points whose distance from ci is

1 1



SD WIDTH FILTER LEVEL

0 1 2 3 4 5 6 7 8
2 0 Mean .386 .566 .965 1

Med .066 .312 1 1
2 1 Mean .028 .134 .468

Med .000 .007 .199
4 0 Mean .629 .692 .790 .873 .830 1 1

Med .432 .539 .779 .927 .807 1 1
4 1 Mean .233 .280 .417 .605 .784 .928

Med .015 .028 .137 .396 .749 .938
4 2 Mean .046 .090 .209 .391 .631

Med .000 .002 .023 .119 .404
6 1 Mean .391 .420 .480 .562 .623 .734 .812 .885 .948

Med .072 .093 .178 .314 .380 .637 .755 .952 1
6 2 Mean .171 .181 .266 .379 .512 .593 .697 .774

Med .008 .007 .030 .098 .264 .383 .575 .728

Table 4. Average dispersion based on 4 trials on 30 by 30 matrix with
normal distribution having mean 0 and indicated SD. Mean is a 3 by 3
mean filter and Med a 3 by 3 median filter. Level i with width k merges
levels i-k,...,i,...i+k into a single cluster before computing the

-. dispersion.

I SD WIDTH FILTER LEVEL-P.|

0 1 2 3 4 5 6 7 8

2 0 Mean .126 .608 1 1
MM .003 .362 1 1

2 1 Mean .000 .054 .475
MM .000 .001 .233

4 0 Mean .401 .484 .587 1 1 1 1
MM .087 .189 .328 1 1 1 1

4 1 Mean .047 .119 .342 .644 .969 1
MM .000 .020 .122 .500 1 1

4 2 Mean .001 .019 .126 .374 .614
MM .000 .000 .011 .129 .385

6 0 Mean .531 .554 .644 .751 .969 1 1 1 1
MM .226 .279 .445 .672 1 1 1 1 1

6 1 Mean .139 .209 .379 .553 .714 .975 1 1 1
6 2.MM .007 .032 .117 .349 .584 1 1 1 1
6 2 Mean .028 .054 .161 .319 .503 .739 .979 1

MM .000 .002 .026 .113 .257 .663 1 1

- Table 5. Average dispersion based on 4 trials on 30 by 30 matrix with
normal distribution having mean 0 and indicated SD. Mean is a 5 by 5
mean filter and MM a 3 by 3 mean filter applied twice. See Table 4 for
further explanation of symbols.
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SD WIDTH FILTER LEVEL

0 1 2 3 4 5 6 7 8

2 0 Mean .050 .569 1 1
14,4 .001 .389 1 1

2 1 Mean .000 .015 .537 '.
M".t4 .000 .000 .329

4 0 Mean .243 .379 .919 1 1 1 1
F .033 .096 1 1 1 1 1

4 1 Mean .004 .098 .410 .979 1 1
4,MI4 .000 .116 .179 1 1 1
4 2 Mean .000 .002 .057 .336 .979

MMM .000 .000 .006 .116 1
6 0 Mean .401 .408 .515 .900 1 1 1 1 1

MMM .099 .104 .202 .800 1 1 1 1 1
6 1 Mean .037 .137 .360 .734 1 1 1 1

MMM .002 .020 .144 .607 1 1 1 1 1
6 2 Mean .004 .031 .126 .324 .668 .948 1 1

MMM .000 .001 .014 .089 .574 .917 1 1

Table 6. Average dispersion based on 4 trials on 30 by 30 matrix with
normal distribution having mean 0 and indicated SD. Mean is a 7 by 7
mean filter and MMM a 3 by 3 mean filter applied three times. See Table
4for further explanation of symbols.

RANGE SIZE FILTER LEVEL
0 1 2 3 4 5 6 7 8 "'

4 3 Mean .497 .582 .747 .975 1
5 Mean .227 .469 .969 1 1
5 MM .020 .204 1 1 1

" -: 7 Mean .090 .475 1 1 1
7 MMM .005 .254 1 1 1

6 5 Mean .380 .501 .682 1 1 1 1
5 MM .084 .207 .425 1 1 1 1
7 Mean .213 .406 1 1 1 1 1
7 MMM .034 .173 1 1 1 1 1

10 5 Mean .562 .550 .643 .880 .925 1 1 1 1
5 MM .272 .283 .476 .938 .800 1 1 1 1
7 Mean .424 .407 .597 .953 1 1 1 1 1
7 MMM .120 .132 .418 1 1 1 1 1 1

Table 7. Average results of 4 trials on 30 by 30 matrix with uniform
distribution having range from -RANGE to +RANGE using a SIZE by SIZE
filter of the indicated type. See Table 4 for further explanation of
symbols.

12



,J.P

smaller than its distance from any c3 (j0 #1). One can use actual distance or a

weighted distance based upon a Bayes decision rule.

3. Select a suitable dispersion measure and compute the dispersion of
each cluster C1, ... 9C s. The parameter THRSH contains the stopping rule for the

*~-: :* ~ algorithm. If THRSH is a positive integer, one stops when the number of clusters
does not exceed THRSH. If THRSH is a fraction between 0 and 1, then one stops when
the maximum dispersion of the clusters falls below THRSH. Thus at this point, one
either stops or goes on to step 4.

4. A decision is made as to which clusters are to be removed. This can
-,either be the cluster with the highest dispersion, all clusters having that highest

dispersion, the i clusters having the i highest dispersions, or all clusters whose
* dispersion exceeds some fixed parameter with the parameter dropping at each cycle

of the program. Ties are disposed of by taking the first cluster one reaches, and
the default setting is to remove all clusters having the highest dispersion value.

Various other rules can also be used.

remoed,5. Here is where the various algorithms differ. If cluster C. is to be
remoedthen a decision must be made as to how to reallocate its members. This

~: reallocation can either be done globally (option G) or locally (option L). The
global option sends all members of C. to the same place, while the local option

i

operates on a point by point basis. There are two basic techniques for this,
leading to a total of 4 different rules.

UANEXT(G) would assign cluster C.i to the next higher or lower available

cluster according to whether its label c.i is above or below the average of the
labels of those two clusters. ANEXT(L) would do the same thing on a point by
point basis. A member of C.i would be assigned to the next higher or lower cluster

according to whether its B-value is above or below the average of the labels of
these clusters. The technique can be modified by using cluster means as labels as
opposed to the original labels c1, ... 9c.

ANEAR(G) at each stage computes the means of all clusters that exist. It
then reassigns C.i to the cluster to which it is closest. ANEAR(L) does the same

thing on a point by point basis. Each point in C.i is assigned to that remaining
cluster to which its B-value is closest.

Ordinal cluster techniques result when the input data is rank ordered;
the ANEXT technique when it operates with cluster labels is also ordinal. The
remaining techniques are essentially numeric.

IV. SOME SIMULATIONS

Having described the algorithms, we turn now to an examination of how well
they perform on artificial data. The underlying regions are shown in Fig. 4.

* L~ The function F was constructed by assigning values of 40, 55 and 60 to the three
regions indicated therein. G was then constructed by adding various types of
Gaussian and uniform noise to F. Table 8 contains the results of the simulations.
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Fraction correct Dispersion cutoffs

0 3SD Filter Method 1 Method 2 method1I Method 2

0 3 by 3 mean .969 .969 .088 .440 .088 .440
5 by 5 mean .905 .929 .098 .347 .091 .285

, 7 by 7 mean .855 .857 .104 .210 .104 .245
MM .962 .965 .091 .421 .093 .501
MMM .922 .922 .097 .239 .097 .284

5 3 by 3 mean .907 .922 .180 .406 .137 .610
5 by 5 mean .889 .901 .098 .256 .077 .372
7 by 7 mean .866 .866 .096 .239 .096 .282
MM .927 .938 .098 .270 .096 .337
tMM .924 .938 .097 .217 .117 .272

10 3 by 3 mean .737 .757 .345 .477 .323 .477
5 by 5 mean .799 .800 .224 .314 .178 .377
7 by 7 mean .826 .826 .176 .294 .176 .247
MM .800 .806 .186 .302 .196 .302

_-'_ MMM .800 .800 .149 .326 .149 .340
15 3 by 3 mean .683 .463 .433 .598 .437 .433

5 by 5 mean .751 .821 .221 .398 .271 .319
7 by 7 mean .760 .868 .160 .258 .144 .321
MM .774 .767 .273 .480 .263 .375

5*.MMM .812 .822 .194 .347 .171 .244
5* 3 by 3 mean .959 956 100 .438 .103 4

5 by 5 mean .918 .905 .076 .375 .097 .431
7 by 7 mean .851 .868 .110 .231 .110 .280
MM .922 .946 .092 .335 .092 .360
MMM .922 .919 .096 .341 .097 .368

10* 3 by 3 mean .882 .886 .203 .419 .203 .419
5 by 5 mean .880 .868 .125 .280 .120 .361
7 by 7 mean .860 .860 .108 .237 .108 .277
MM .891 .903 .103 .292 .124 .326
MMM .891 .893 .118 .259 .109 .401

15* 3 by 3 mean .722 .790 .354 .493 .301 .421
5 by 5 mean .865 .873 .192 .380 .148 .375

a., 7 by 7 mean .837 .862 .122 .315 .106 .358
IMM .854 .858 .219 .311 .185 .371

-_, MMM .866 .822 .179 .304 .177 .324
- 20* 3 by 3 mean .783 .753 .252 .517 .330 .471

5 by 5 mean .833 .793 .165 .375 .149 .458
7 by 7 mean .812 .802 .244 .266 .158 .293
MM .816 .816 .197 .420 .197 .413

_.-. MMM .835 .841 .195 .355 .162 .414

Table 8. Fraction correct classification for data in Fig. 4 using
0- indicated prefilters. See text for explanation of prefilters and

cluster methods. The dispersion was a nondirected 3 by 3 dispersion.
The left hand figure indicates the result with 3 clusters, while the
right hand figure is that for 4 clusters. The top data set is the
original data, while the next three relate to Gaussian noise with the

" " ~indicated standard deviation. The symbol k* refers to a uniform
distribution from -k to k.
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It used 2 cluster methods: Method 1 was ANEXT(L) and Method 2 ANEAR(L). In each
case CHOS was set at .02. Notice that for Gaussian noise, Method 1 seems to work
consistently better than Method 2, while for uniform noise the verdict is mixed. -

* . The dispersion cutoffs are included to show the rather dramatic drop in the dis-
persion value once the program arrives at the correct number of clusters. Tables
9 through 11 contain step by step graphic representations of the manner in which
the nondirected and rectangularly directed 3 by 3 dispersions behave as the
clustering process proceeds. The cluster routines are AN4EAR(L), and the data is a
20 by 20 matrix. Table 9 is for data having a normal distribution with expected
value 20 and standard deviation 4, while Table 10 is normal with expected value 30
and SD =8; the data for Table 11 is a mixture of two normal distributions, each
with SD =4; the top half of the data matrix had expected value 30, and the bottom
half expected value 20. The parameters for the clustering process involve the use
of a 3 by 3 special mean filter with CHOS set at .02 and THRSH set so as to produce
6,5,4,3 and 2 clusters. The display labelled THINOUT shows the dispersions for the
input to the THINOUT function. Notice the dramatic dropoff in dispersion in Table
11 when the proper number of clusters is reached, as opposed to the situation in
Tables 9 and 10, where the values of the dispersion would quite properly tell that
there is only one cluster in the data.

V. LOW RESOLUTION SUMMARIES OF DIGITAL PICTURES

The problem of cataloging and summarizing the content of a large number of
digital pictures is nontrivial. Naturally, one can simply produce the indicated
pictures and store then, but this is an expensive process. Another method involves
the use of low resolution line printer summaries. The use of such summaries also
cuts down dramatically the cost of applying sophisticated image segmentation
techniques to such data sets. This will be illustrated with some pictures in the
next section, but here we will look at some line printer results, and see a possible
application to target detection. The data are from the Westinghouse FL IR data base
that was kindly supplied by Bruce Schachter. Each record consists of a 128 by 128
digital picture, and a 24 by 24 summary was produced using a 10 by 10 window that
moves 5 units at a time. Thus the (1,1) position of the output is the mean of the
10 by 10 region in the upper left corner of the original record; the (1,2) position
would come from a region being translated 5 units to its right, etc.

hsThis type of low resolution picture followed by an image segmentation algorithm
hssome application as a target detector. The low resolution picture itself is

p robably too busy for a target selection algorithm to quickly work; however, in the
segmented version, one can just write a program that will locate the center of those
connected subregions that are in the highest (or lowest) level cluster of the output.

* The result is sometimes useful , as shown by Table 12. It should be noted though
that these results are only indications of possible use. Much work needs to be done
before a good working version of the algorithm can be produced. Simple outputs are
shown in Fig. 5.

VI. REAL DATA ANALYSIS

This final section deals with the segmentation algorithms applied to real data.
There are two sources for the data: Bruce Schachter's Westinghouse FLIR data base,
and satellite data (SMS II) showing the North Atlantic region of May 5, 1980. This

*latter tape was supplied by Robert M'.yers of the Air Force Geophysical Laboratory.
Most of the plates are self-explanatory, but a few comments may still be in order.
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NORMAL DISTRIBUTION WITH EXPECTED VALUE 20
OUTPUT OF NONDIRECTED AND DIRECTED DISPERSIONS
AT VARIOUS STAGES OF CLUSTER PROCESS

100- _ _ _ _ _ _ _

! 6 01 I THINOUT
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.:40 100 - --- _---
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Table 9. See text for 2xplanation.
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NORMAL DISTRIBUTION WITH EXPECTED VALUE 30.
OUTPUT OF DIRECTED AND NONDIRECTED DISPERSIONS
AT VARIOUS STAGES OF CLUSTER PROCESS
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Table 10. See text for explanation.
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MIXTURE OF 2 NORMAL DISTRIBUTIONS WITH EX-
PECTED VALUES OF 20 AND 30. OUTPUT OF NON-
DIRECTED AND DIRECTED DISPERSIONS.AT VARIOUS
STAGES OF THE CLUSTERING PROCESS
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60C 6
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L 100-lia oo5
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460 4
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L l
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201- Directed
I m I Bn J I i
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Table 11. See text for explanation.
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Estimated Actual
Image coordinates coordinates

12 39 36 36.5 35.5
39 93 36.5 92.5
90 36 91.5 35.5
90 93 91.5 92.5

13 39 39 40.5 37
39 90 40.5 91
87 39 87.5 37
87 90 87.5 91

14 33 39 31 36
33 87 31 92
96 39 97 36
96 87 97 92

15 30 39 28.5 40
30 90 28.5 88
99 39 99.5 40
99 90 99.5 88

16 27 39 28.5 42
-. 5' 30 87 28.5 86

99 42 99.5 42
99 87 99.5 86

17 36 30 36 31.5
39 96 36 96.5
93 33 92 31.5
93 93 92 96.5

18 45 39 42 36
45 87 42 92
84 39 86 36
84 90 86 92

Table 12. Estimated coordinates of targets on
0 Westinghouse FLIR data using 12 by 12 window.

Actual coordinates are as provided by Westinghouse.
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Plates 1 through 6 are from the AFGL tape, and the remaining plates from the :
Westinghouse FLIR data. The use of low resolution summaries of data is shown in
Plates 4,5,14,16,18,21 and 22. Several of the plates show the effect of adding
varying amounts of Gaussian noise to the original data set. Similar work was done
with uniform noise, but the results are not included here. Plates 19 through 22

V2 are worthy of further explanation. The noise in each of them has standard deviation
5.4. Plate 19 uses white noise, but Plate 20 introduces a pattern to the noise.
The pattern conies as follows: corresponding to each pixel in the original image,
there is an integer randomly chosen from 1,2 and 3. If this integer is 1, then the
noise at that pixel is left as is; for a value of 2, the noise is spread over a
2 by 2 region with the given point at its upper left corner; for a value of 3, the
noise is spread over a 3 by 3 region. The resulting noise has a correlation of
0.67 between adjacent columns and one of 0.36 between columns separated by a single
unit.

In the presence of a fair amount of noise, the segmentation programs will on
occasion be influenced more by the noise than by the signal. One way to test for
this is to take the cluster output for a fairly high number of regions, and sub-
tract it from the prefilter output. One then takes the absolute value of this
difference and applies a segmentation algorithm to it. What appears is a picture
of what was originally suppressed. Plates 23 and 24 illustrate this technique for
the data of Plates 19 and 20. Notice how clearly the central portion of the tank
in the picture emerges. This technique will be more fully explored in a later
paper.
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Plate 1. Chesapeake Bay Area. Pictures show original data,
3 by 3 mean filter, 17, 11, 9, and 6 regions. Cluster method
is ANEAR (G).

!

•
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Plate 2. Cheasapeake Bay Area. Pictures show original data
h twice followed by 17, 11, 9, and 6 regions. Cluster method

is ANEAR (G) using no prefilter.

!" 23

4_ i S * ',.,. _ .



Plate 3. Chesapeake Bay Area. Pictures show original data,
* -3 by 3 median filter, 17, 11, 9, and 6 regions. Cluster method

is ANEAR (G).
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PlateS. Data is8 by 8 moving window applied to data of Plate 1.
5 Pictures show original data twice, followed by 17, 11, 9, and 6

regions. Cluster method is ANEAR (L).
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Plate 6. Edge of warm ocean front. Pictures show original
data, 3 by 3 mean filter, 8, 6, 4, and 3 regions. Cluster
method is ANEAR (L).F
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Plate 9. Data and pictures as in Plate 7, but with additive
Gaussian noise having standard deviation 8.

..

..

Plate 10. Data and pictures as in Plate 7, but with additive
Gaussian noise having standard deviation 16.

31



- - - -.. -.- .. . . . . . - - - - -for

- VA

Plt 1 eod2 o LRdt ae icue hwoiia

::. Plate 12.Upelftqaero Record 25 of FLIR dt tape. Pcue hwoiia
dactare folow bygia additny ofGassan noiser hain standar
adviatgions f ute 1,ho 4, 8,A and 16

67 . %

- - 33



p.%

UPlate 13. Same as Plate 12 except with Gaussian noise having
standard deviation 4.

A-

Plate 14. Record 25 with Gaussian noise having standard
n4. Data is 8 by 8 moving window. Pictures show.

adata twice, 8, 6, 4, and 3 regions. Cluster method
is 13. (L) with no prefilter.
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* Plate 15. Same as Plate 12, except wt Gaussian noise havngar
stnddeviation 8.
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Plate 17. Same as Plate 12, except with Gaussian noise having
standard deviation 16.
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Plate 19. Same as Plate 12, except with Gaussian noise having
standard deviation 5.4.

4-

afit

Plate 20. Same 9'i Plate 12, but with patterned noise added.
The standard deviation of the noise is 5.4.

41



I., K

* i

Plt 1 y8mvn idwo aafo lt 9

Plate 21. 8am by 8lt movin windowpo data isfrom Plate 19.

43



%T'

- . . * * * S

."L

1

_-. .. 4

' Plate 23. Data is obtained by looking at difference between

" prefilter output and cluster output with 8 regions of Plate 19.
- ' ","Pictures show this data twice, followed by output with 8, 6,

' 4, and 3 regions. Cluster method is ANEAR (L).
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Fourier Shape Analysis:
5 A Multivariate Ptern Recognition Approach
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-I. INTRODUCTION

* One of the general objectives of sedimentology is to determine the origin

* ("Provenance") of sediments. Commonly, attempts to determine provenance are

predicated on the assumption that sediment sources yield a characteristic suite of

* minerals. Hence, once mineralogy is determined, the presence of diagnostic minerals

* -. is an unequivocal indication of the contribution of a specific sediment source. A

problem arises, however, if there is little compositional contrast between sources.

* This may arise because either sources have common mineral assemblages or the sources

in question are not primary but consist themselves of quartz-rich sediments that have

lost most nonresistant minerals to dissolution or abrasion.

The most resistant common rock-forming mineral is quartz. In general, quartz

abundance increases in the sand-silt size range while other less resistant minerals
are selectively removed. Because of its resistance to chemical and physical attack,

the shapes of quartz particles change very slowly under the influence of processes

associated with transport and deposition (Kuenan, 1959; Smalley, 1966). Not

* * -surprisingly, the shapes of quartz sand and silt particles from different source

> terrains (or with different transport histories) are generally different (Ehrlich et
al., 1980).

Most sedimentary deposits are of mixed provenance and often the number and

nature of sources are not known a priori. Thus, any attempt at using quartz shape for

proennc prpse mstetrmne t e ngs:
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1) the number of sources,

2) the shape signature of each source, and

3) the relative contribution of each source to each sample.
- / .0

In addition, shape data must be acquired economical1 allowing_nalysis of hundreds

of particles per sample and tens ofhundreds of samples in any particular

investigation. To this end,--a simple image analysis procedure generating edge points

of particles and a set of pattern recognition algorithms accomplishing end member *.*

(source) characterization and mixing proportions.has been designed.

II. IMAGE ANALYSIS
S.'

The perimeters of two-dimensional projections of quartz particles are digitized

using a microprocessor controlled microscope mounted video scanning system (Fig. 1).

The associated video digitizer accepts the analog signal from the video scanner and

generates a spatial array of points (pixels) each of which has an associated shade of

gray. Because the digitizing unit has an on-board memory acting as a buffer, it is

synchronized with both the scan r;ite of the video scanner and the acquisition of a

scene in 1/60 sec.

The microprocessor uses simple thresholding (pixel value equal to a dark shade

of gray) to find the first edge point. Then, using a search pattern involving small

excursions, first away from the edge and then inwards, the particle outline is traced

pixel by pixel until closure is obtained (Fico, 1980). Depending on the

magnification, 200-1000 points are generated for each particle. These edge points are

used as raw data for the next step in the analysis.

Ill. SHAPE MEASUREMENTS

Amplititude spectra of a finite Fourier series in closed form are used i -,ap(

.0 descriptors of each particle. A Fourier series in closed form can be used to

describe the outline of a grain's maximum projection silhouette to any desired

precision (Ehrlich and Weinberg, 1970). Each term in this series is of the frm Rn

cos (On -0 n) where Rn is the amplitude of the nth term or harmonic and is 0, th-

phase angle associated with this specific harmonic. Each harmonic in the s. rf"e

represents the contribution of a specific shape component to the total shape of t1he

.48-
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Figure 1. System hardware configuration.
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grain. For example, the second harmonic represents the contribution of a

"figure-eight," the third represents a trefoil, the fourth a quadrefoil, and so on.

In general, the nth harmonic represents the contribution of an n-leaved clover to the

empiric shape of the grain (Fig. 2). Thus, the lower harmonics are a measure of gross

shape while the higher harmonics measure increasingly fine-scaled surface features.

Because of the limited resolution of the measuring device, only the first 24

harmonics are calculated and used in the shape analysis.

The coordinates of the maximum projection outline derived from the video

digitizing system are used to calculate the Fourier series. To produce homology

between grains, the centroid of a subset of 48 points extracted from the original

grain outline is always used as an origin for the Fourier series (Full and Ehrlich,

1982a). Although any origin will produce a series that converges to the same shape,

the use of this centroid ensures that two grains having exactly the same shape will

have the same harmonic values for their respective Fourier series. This allows the

Fourier harmonic amplitudes of grains to be comparatively analyzed (Full and Ehrlich,

1982a). The amplititude of the first harmonic (an offset circle) is a measure of

accuracy in finding this centroid and is not used in any shape comparisons.

For each sediment sample, 200 or more randomly selected quartz grains (generally

within a narrow size range) are analyzed. Each sample is thus represented by 200

Fourier series. At any specific harmonic of those series, a sample is represented by

200 amplititude values (one for each particle). These values can be displayed in a

"shape-frequency distribution" at each harmonic wherein each harmonic amplititude is

plotted against frequency of occurrence (Ehrlich et al., 1980). Thus each sample is

represented by 23 shape-frequency distributions--one for each harmonic 2-24.

Aspects of information theory (Shannon, 1948) can be used to cast the above

harmonic amplititude distributions in an optimal configuration (Full et al., 1982c).

The algorithm that produces such an optimal configuration is based on information

entropy. The information entropy (as defined by Shannon, 1948) of any frequency plot

is a measure of contrast between intervals. A low entropy value indicates that the

amplitude value of any grain has a much greater probability of falling in certain

intervals than in others. Thus a frequency plot with low entropy is a distribution

with well-developed modes and anti-modes exhibiting large contrast between intervals. ".

A high entropy value indicates relatively small contrast between intervals. "Maximum
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entropy" is attained when the amplitude value of any grain has equal probability of

occurring in any interval (Shannon, 1948), i.e., when the frequencies in each

interval are equal.

S Using one given harmonic, if amplitude values from all samples are pooled

together into a single shape-frequency distribution, then the widths of the intervals

can be adjusted such that the frequency plot displays maximum entropy. Thus the width

of the intervals can be unequal and depend on the shape of the distribution of the

entire pooled data set. Individual sample frequency plots cast with these variable

interval widths have been shown to provide maximum informtion upon any subsequent

analysis (Full et al., 1982c).

The problem exists of which harmonic(s) (2-24) have the greatest potential for a

clear, unambiguous solution upon subsequent shape analysis. We need to choose the

harmonic(s) that exhibits the greatest contrast between individual sample frequency

* plots. The "relative entropy" of the entire data set can be used to measure this

contrast (Full et al., 1982c). The relative entropy is the average entropy of the

individual sample plots divided by the maximum possible entropy. The lower the

relative entropy of a data set, the more contrast exists between samples contained in

that set. Thus the relative entropy can be used as a feature extractor (Full et al.,

1982c). Choosing the harmonic with the lowest relative entropy will produce optimal

results form the unmixing algorithms described below.

IV. PATTERN RECOGNITION

A. CABFAC/EXTENDEO CABFAC

Once each sample is cast as a frequency distribution, with class intervals

defined by the maximum entropy argument, the array is in an optimal configuration for

subsequent analysis. Proportions of particles in the class intervals at a given

harmonic comprise a constant-sum variable set (they sum to 100% in this case). Each -

sample can be viewed as a vector defined on a set of orthogonal axes one for each

* class interval of the frequency distribution. Because the number of class intervals

is generally large (say >10) this "measurement space" is of high dimensionality and
so it is difficult for most normal persons to visualize. The fact that the values of

* each sample-vector sum to 100% immediately confines the data to a hyperplane of
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dimensionality one less than the number of intervals (Full et al., 1982a). In

addition, if we assume that two or more sets of intervals wax and wane together from

m sample to sample (maintain constant relative proportions) then the number of

independent sets of intervals doing so is equal to the number of "end members." For

reasons exactly analogous to the aforementioned constant-sum restriction, this

further reduces the number of directions in which the data array can spread in

measurement space. In fact, the data must be confined to a hyperplane of one

dimension lower than the number of end members. For instance, if all samples were

mixtures of only two end members (each may consist of many characteristic modes)

then, in the absence of random perturbations, the vertices of the sample vectors will

be arrayed along a line embedded in a measurement space of higher dimensionality. The

•. " space of lower dimension which is sufficient to contain the data array is called
"mixture space" (Full et al., 1982c).

A method to determine the dimensionality of mixture space has evolved over the

*past decade (Imbrie, 1963; Klovan and Imbrie, 1971; Klovan and Miesch, 1976; Miesch,

1976a). This has resulted in the algorithm EXTENDED CABFAC (Klovan and Miesch, 1976).

The algorithm CABFAC (Klovan and Imbrie, 1971) evolved from conventional factor

U analysis (Harmon, 1960). Conventional factor analysis seeks, through analysis of

correlated variables (via either a correlation or a variance-covariance matrix), to

* " produce a set of new variables (factors) that are, themselves, uncorrelated. Often

most of the variance associated with the old variable set is associated with fewer

variables in the new set. Imbrie and students (Imbrie and Purdy, 1962; Imbrie, 1963),

utilizing the general mathematical-analytical framework of conventional factor

analysis (eigenvector-eigenvalue evaluation of a scatter matrix), built an analogous

analytical system for determining the relationships between multivariate sample

vectors. Sample vector pairs canbe related via their vector cosines (termed

similarity coefficients) which are exactly analogous to correlation coefficients

between variable pairs. However, when the number of samples is large, calculations of

a complete similarity matrix overwhelms the capacity for many computers. To alleviate

Q this, Klovan and Imbrie (1971) derived the necessary information by diagonalizing the

cross product matrix formed by pairwise comparison of variables. Klovan and Imbrie

., --. (1971) thus demonstrated the functional relationship between conventional

(variable-based) factor analysis (termed "R-mode" factor analysis) and sample-vector

S,, analysis (sometimes termed "Q-mode factor analysis").
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Program CABFAC determines a new set of orthogonal reference axes in place of

those defined by the original class-intervals. Commonly, to simplify interpretation,

* - this new set is rotated using the varimax criterion (Imbrie, 1963).

Program EXTENDED CABFAC (Klovan and Mlesch, 1976) contains as its basis

program CABFAC of Klovan and Imbrie (1971). However, two important features have been

"' added: 1) the results (scores of reference axes) are reported in the same units as

the input data vectors, and 2) a new criterion is developed to determine the

dimensionality of mixture space (Miesch, 1976a). Once the true dimensionality of the

.. data is known, the ends of the sample vectors are projected into this "reduced space"

within which individual points (each representing a multivariate vector) can be

defined that, when connected by straight lines, will form a geometric figure (termed

a "polytope") enclosing the data cloud. The minimum number of polytope vertices

needed is one more than the dimensionality of this reduced space. For instance, the

vertices of a triangle in a plane are sufficient to classify all enclosed samples in

terms of positive linear combinations of end members (vertex compositions).
U.. .

B. QMODEL

Program EXTENDED CABFAC does not itself identify the end members.

Accordingly, Klovan and Miesch developed program QMODEL whose object is to determine

end members with more realistic compositions (i.e., positive class interval

proportioning in data space). Program QMODEL defines end members in one of three

ways. The first way is to use the principal axes after the varimax rotation as end

members. Although this method generally assures positive composition loadings

(proportions of each end member in mixing space), positive composition scores (actual

interval proportions in data space) are not guaranteed. The second method, optional

in QMODEL, is to manually locate the end members. To aid in this, Miesch (1976b) has

devised program EQSPIN. But unless the user has extremely tight control on the model

being developed, he will have difficulty in finding a solution to the problem,

0; especially when four or more end members are involved.

The third method available in QMODEL is an oblique solution which, by

searching either the varimax space or data space, locates extremal points (vectors)

as end members. These points, representing real samples, become reference axes. After

locating these points within the varimax data set, the coordinates of points in this

54

r -- *. - . . .



space are normalized by dividing the squared varimax factor matrix loadings by the

communalities as derived by program EXTENDED CABFAC (Miesch, 1976a). Relative

m distances of all sample points about these new reference axes can be interpreted as

' mixing proportions. These proportions are called oblique composition loadings and the

* ', i space defined by the above reference axis is refered to as oblique space.

With this method the remaining configuration of data (i.e., the non-extremeq
samples) in varimax space is not involved in end members determination. Thus, the

QMODEL algorithm may be said to depend on a relatively small number of "outliers" to

establish a metric for the entire data set. If the data envelope has bulges or

invaginations, lines connecting the QMODEL end members may penetrate that envelope.

Points falling outside the mixing polytope must contain negative proportions of one

or more end members. The points with negative proportions are not easily

- interpretable in cases where mixing is considered an additive process. The presence

of such negative mixing proportions indicates that one or more true end members have

not been captured in the original data array. Therefore, new reference axes (end

"- members), external to the data, must be located such that the envelope defined by

these areas contains the data.

C. EXTENDED QMODEL

In a recent paper, Full, Ehrlich, and Klovan (1981) introduced a modification

i of the Q-Mode unmixing algorithm QMODEL (Klovan and Miesch, 1976) wherein an

iterative procedure was developed to locate feasible end members not captured within

* - a data set. This new algorithm, EXTENDED QMODEL, finds end members whose compositions

, are positive (or nearly so) and can be lineraly proportioned to regenerate all of the
data without resorting to negative proportions. Additionally, the sum of the
proportions for each data point is constrained to be unity. The subroutine that

locates these end members (herein called the DENEG procedure) does so by making an

., "edge-adjustment" of the mixing polytope if negative mixing proportions occur in

QMODEL, followed by a "vertex adjustment" if the new polytope vertices (extremal end

members) contain negative proportions. The DENEG end members represent vectors more

extreme than any sample in the data set.
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The general steps in the DENEG algorithm are as follows:

1) Each column of the oblique composition loading matrix of QMODEL is scanned

for negative composition loadings. Negative loadings are divided into three

categories: negligible (0.00 to T1), adjustable (T1 to T2 ), and nonadjusted (less

than T2 ) . Nonadjusted loadings are ones that correspond to "outliers" that will not

affect definition of reference axes.

2) If there are no adjustable loadings, stop. Otherwise proceed to (3).

3) For each column, identify the most negative adjustable loading, say of

value di . Add the absolute value of di to every entry of the column being adjusted.

Geometrically, this translates the edge represented by this column "out" a distance

equal to the absolute value of di in the initial oblique space, parallel to the

original edge defined by the initial oblique end members. (Fig. 3a).

4) Change the coordinates of all sample vectors based on the amount of

"outward" movement of the edge of reference polytopes. That is, if Xi=xi,..., Xin
represents the coordinates of each vector in the initial oblique space and d.,

.• dn is defined as in (3) above, then

x: new coordinate (xil + d1) (Z) . . . (xn d ;

where Z 1M/( + d + . . d

5) Locate the new vertices of the reference polytope in QMODEL oblique space.

The coordinates of the vertex will be the corresponding distance each side was

translated added to the old vertex coordinate corresponding to the translated

direction, which is determined by recalling that the sum of coordinates at each --

vertex is unity. That is, the oblique coordinates (loadings) of each new end member

[Ei=(di,...,di,C,di1,...dn) where d di+,...,dn is the distance in

oblique space each respective side was translated, and

c 1 - (dI  +...+di- 1  + di+1 +...+dn).]
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6) Find compositions of each vertex using the QMODEL oblique transformation

matrix.

7) Test the composition scores (corresponding end member composition in the

. a'original variable space) of each vertex for positivity. If all composition scores are

• V greater than cutoff T3, stop. Otherwise, for each unacceptable end member, zero all

* - negative composition scores and reproportion this vertex to constant sum. A result of

this procedure is that edges of the new polytope need not be parallel to those of the

initial QMODEL polytope (Fig. 3b).

8) Submit the new vertex compositions to QMODEL. Generate the corresponding

varimax loadings.

9) If the varimax loadings of the new end members fall within a distance T

of the previous iteration, stop. Otherwise, continue.

10) Generate a new oblique solution.

11.) If the maximum number of iterations T5 have been obtained, stop.
- K Otherwise, return to (1).

Two variable parameters in the algorithm add flexibility to the modeling

process. One parameter (T2 ) defines the maximum distance a polytope side can

potentially move. Points beyond this maximum specified distance are considered

,' '. outliers or impurities and will not affect the overall solution. "Distance" in this

sense represents the degree of movement of a side measured relative to the distance

from the opposite vertex. A distance of 0.25, for instance, means that a polytope

side had moved a distance equal to 25% of the distance of the opposite vertex to the

original polytope side in QMODEL oblique space. Appropriate values for this parameter

must be determined from the nature of the problem to be solved. In many cases where

O QMODEL cannot converge to a unique set of end members via the extreme normalized

composition subroutine (EXNORC) or the extreme raw composition subroutine (EXRAWC),

modest movement of polytope sides provides a satisfactory solution. Of course, lack

of convergence of these subroutines might also indicate a wrong choice in the number

of end members.
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The other variable parameter (T4) defines the termination point of this

algorithm in terms of closeness of the varimax loadings of the end members from

iteration to iteration. Failure to converge may arise from either a poor end member

fit, or oscillation in a narrow region between realistic varimax space and

unrealistic varimax space.

Three cutoffs are used to control the amount of computer time needed to find a

proper solution. One cutoff (T5 ) determines the maximum number of iterations. Another

cutoff permits solutions with slightly negative composition loadings (T1), whereas

the last cutoff permits slightly negative composition scores (T3 ). The latter two

cutoffs are necessary because in some cases accepting such a factor model may better

reproduce the original data set in terms of geologic modeling; the small negative

values may be "close enough" to zero to be considered zero when compared to the

original precision of the empirical data.

0. FUZZY QMODEL

In the absence of a priori knowledge, QMODEL requires the presence of

vertex-extreme samples in the sample set, whereas EXTENDED QMODEL requires a set of

edge-extreme samples. However, in either case, reliance on extreme data raises the

" ". " ~* possiblity that a relatively few isolated data points might seriously affect the

relative geometry of extreme samples with regard to a mixing polytope.
I

A more usual approach in conventional data analysis is not to rely on

individual sample points, but to use aggregate properties of the data which tend to

dissipate the effects of random variation (e.g., the greater the stability of the

mean compared to an individual data value). Another reason to deduce the nature of

end members from the entire data structure rather than from a few outlying points is

that outliers may, in many situations, not "belong" to the rest of the data. That is,

they may represent either samples not belonging to the system of interest or even

* 'incorrectly evaluated samples (i.e., errors in measurement or compilation). The

alternative, "FUZZY QMODEL" (Full et al., 1982b), described herein, determines

extremal end members based on the zollective properties of all the data. But before

the basic algorithm of FUZZY QMODEL is described, a brief overview of fuzzy

clustering will be given.

59



4,C, .* * . .- * °

In general, cluster analysis refers to a broad spectrum of methods which try

to subdivide a data set X into c subsets (clusters) which are pairwise disjoint, all

nonempty, and reproduce X via union. The clusters are then called a hard (i.e.,

nonfuzzy) c-partition of X. Many algorithms, each with its own mathematical

clustering criterion for identifying "optimal" clusters, are discussed in the

excellent monograph of Duda and Hart (1973). A significant fact about this kind of

algorithm is the defect in the underlying axiomatic model--that each point in X is

unequivocally grouped with other members of "its" cluster, and thus bears no apparent

similarity to other members of X. One such way to characterize an individual point's

similarity to all the clusters was introduced in 1965 by Zadeh (1965). The key to

Zadeh's idea is to represent the similarity a point shares with each cluster with a

function (called the membership function) whose values (called memberships) are

between zero and one. Each sample will have a high degree of similarity between the

sample and a cluster while memberships close to unity signify a high degree of

similarity between the sample and a cluster while memberships close to zero imply

little similarity between the sample and that cluster. The history, philosophy, and

derivation of such mathematical systems are well documented in Bezdek (1981). The net

effect of such a function for clustering is to produce fuzzy c-partitions of a given

data set. A fuzzy c-partition of X is one which characterizes the membership of each

sample point in all the clusters by a membership function which ranges between zero

and one. Additionally, the sum of the memberships for each sample point must be

unity. If the function were to define values as either zero or one, then the

memlberships would define a hard c-partition (i.e., conventional clustering). In this

light, the proportions derived from EXTENDED CABFAC-QMODEL (Klovan and Miesch, 1976),

EXTENDED QMODEL (Full et al., 1981) and FUZZY QMODEL, define fuzzy c-partitions in

themselves wherein the membership functions are linear.

Bezdek (1981) discusses a number of ways to generate fuzzy c-partitions of

dita sets and c.ontains many n'XdMp)eS Of data1 dnalysis drawn from a variety of applied
fields, including taxonomy, medical diagnosi3, and sprinkler design. The fuzzy

O-inedns (FCM) algorithm (Bezdek, V81 l) is o ne such fuzzy clustering techniq ue that

,,merates fuzzy c-partitions of a dati ;et. The clustering criterion upon which .CM

is hased is the weighted sum of squared uryrors obj,-tive function jm defined as

N C
•M

Jm(Uv):! xk-vII (3) -S
r='' k:l i:1

-.T
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where

1) U = (Uik) is a fuzzy c-partition of X (i.e., U is a matrix whose element Uik

represents the membership of vector Xk in the ith fuzzy cluster). The function that

defines the Uik is a non-linear inverse function.

. i 2) V = (u1, .. .. , v c ) is the set of "cluster centers" (i.e., vi is the

"center" or core of fuzzy cluster i). The location of the cluster centers is

- determined by a function which weights the contribution of each vector to a

particular cluster by the memberships u.

3) • = any inner product norm. In the examples given, the Euclidean norm is

used.

CA 4) mEL1, m) = a weighting exponent called the fuzziness exponent.

*5. .- C.%. ""Outlying data have virtually no effect on the locations of the centers v
U m

because (u (the weighted membership of Xk in cluster i, raised to the nth power)

approaches zero much faster than the (uik)m of the other points Xi (see eq. 3). In

other words, the effects of noise can be essentially "filtered out" by adjusting m,

the fuzziness weighting exponent. An example of the use of the FCM algorithm in

* geology can be found in Bezdek, Ehrlich et al., (1982) while a synopsis and FORTRAN

-. ,'-" listing for FCM can be found in Bezdek, Ehrlich, and Full (in preparation). Our

present interest in FCM centers around three facts which are well established in both

theory and practice.

1) The centers vi generated by FCM lie well "inside" the convex hull of data set

X; this is important because the edge-adjustment DENEG procedure used in EXTENDED

QMODEL always expands initial convex polytopes whise vertices are putative end
members.

2) The convex hull of the vis is, loosely speaking, a "skeleton" of the main

structure of X itself; in particular, iterative expansion of the faces of this

polytope via the DENEG procedure will proceed toward the type of unmixing solution

described in Full, Ehrlich, and Klovan (1981).
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3) Noisy points (outliers in X) will exert little effect on the spatial location

of any center vi . This is one of the primary advantages of FCM--it is relatively

insensitive to the presence of outliers.

The implications of (1) - (3) for the linear unmixing problem are simple: the

centers [vi] generated by FCM always occupy spatial locations in end member space

which are favorable for the initialization of the DENEG procedure. For this reason,

the EXTENDED QMODEL procedure was further extended by incorporating the following

algorithm:

1) Locate initial end members within normalized varimax space using the FUZZY

c-MEANS algorithm.

2) Determine the varimax loadings of these initial end members and submit them

as end members defining the QMODEL oblique solution.

3) As these end members are contained within the data set (as opposed to the

-... edges of the vertices of the hull of the data), the maximum edge translation (the

DENEG value) must be enlarged for the first iteration only. After these steps are

performed, the DENEG procedure is continued until either a solution is found, or a

cutoff value is exceeded.

In the case where the data forms a single cluster with internally uniformly

distribut-d data, the FUZZY QMODEL algorithm is strongly influenced by the external
configuration of the data. However, this influence is not derived from the outer edge

of the data cluster (the convex hull) but from the geometry of an outer "zone"

wherein the data density decreases. This is because of the nonlinear inverse

weighting function used to define the fuzzy centers upon which outlying points have

much less influence than data closer to the centers. In the case of a data cloud that -

is arrayed as a clearly defined geometric figure, such as a triangle, the fuzzy

centers will be imbedded in the data cloud in such a manner that the vertices will

define a similarly inscribed polygon. This appealing characteristic can become

Oij progressively destroyed as the data becomes more and more clustered. In such a case,

the fuzzy cluster centers themselves would serve as vertices and there is no
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%" guarantee that such vertices would bear any relationship to the "true" mixing

) polytope. Strong clustering can be easily detected by simple inspection of the output

! from the algorithm. If the data has a definite cluster structure, then the mixing

model for the data must be questioned or the sampling plan carefully analyzed.

.- The differences between QMODEL, EXTENDED QMODEL, and FUZZY QMODEL are

illustrated in Figure 4. In the following example, ternary mixing in a multivariate

- data set can be visualized by examining the data structure as represented in

normalized varimax space (Fig 4a). It is assumed for the following illustration that

any point located on this triangular plane can serve as a potential end member for

the mixing systems presented below. Figure 4(b) represents a ternary mixing space.

Any of the QMODEL procedures (QMODEL, EXTENDED QMODEL, FUZZY QMODEL) will identify

points EI, E2, and E3 (the vertices of the mixing triangle) as end members. Figure

4(c) represents a uniform data array that incompletely fills the mixing polytope

ki depicted in Fig. 4(b). EXTENDED QMODEL could recover end members E1 , E2, and E3 as

the proper end members of the mixing system whereas QMODEL could not. However,

* .. consider the same data configuration but with outlier E4 located external to the

mixing polytope defined by E1 , E2 , and E3 (Fig. 4d). In this example, the QMODEL

g procedure will define point E4 as a vertex; EXTENDED QMODEL, which uses the QMODEL

. " solution as a starting position, would define a mixing polytope that will also

S.- contain point E4. In both cases, the procedures cannot define triangle EIE 2 E3 as the

ternary mixing system when plotted in normalized varimax space. In this instance the
existence of point E4 as an "aberrant" outlier can be readily observed. However, when

-. the number of end members are four or more, or the edges of the mixing polytope are

. not clearly defined by the data, it is much more difficult to detect such structure.

,* . The common occurrence of such configurations in geology motivated us to propose the

alternative fuzzy means of data analysis. Whereas the initial iteration of previous

methods relied heavily on the extremes of the convex hull of the data, initialization

of the DENEG procedure with fuzzy clustering emphasizes the data configuration within

.-. the hull. The net effect of such a fuzzy analysis is that the effects of aberrant

data is minimized.

V V. SUMMARY

* ,The primary steps in shape analysis are the following:

1) Particles are digitized and the two-dimensional edge points defined.
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-. Figure 4. (A) Normalized varimax space where oblique end members can be conveniently ,.
, visualized; (B) data structure (shaded) wherein end members E, E2, and E3, contained
o....-,within the data set, can be properly located by both QMODEL and EXTENDED QMODEL: (C)

portion of the data (shaded) section of the triangle represented in (B) wherein end
v..- members E2 and E3, now external to the data set, can be properly located by EXTENDED

/ - -o -~ S

QMODEL: and (D) same data structure as (B) above except on additional point E4 is

added, neither QMODEL nor EXTENDED QMODEL can recover EI,E2,E3 in this case.
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2) A finite Fourier series in polar form with the particle centroid used as the

origin of the polar system is calculated.

3) The multiparticle data is summarized for each sample via shape frequency

plots at each harmonic using variable class interval widths based on entropy

considerations.

4) The frequency diagrams in the form of sets of proportions are classified in

terms of mixing proportions of end members by "unmixing" algorithms.

Our experience indicates that precise characterization of particle shape alone

is not usually sufficient in itself and further "downstream" analysis is required to

solve most problems. Although most problems with which we have dealt require use of

the CABFACQMODEL family of unmixing algorithms, others have required other

multivariate procedures such as multiple discriminate analysis.

The algorithms described in (3) and (4) above haie been found useful with other

types of multivariate data sets. The method of creating frequency diagrams are useful

i for further analysis of any complex set of frequency distributions as the defining of

class intervals on the basis of maximum entropy ensures the least ambiguous results

from the unmixing algorithms. The development of these unmixing algorithms (EXTENDED

CABFAC, QMODEL, EXTENDED QMODEL, and FUZZY QMODEL) have allowed the interrelation-

*N ships of large numbers of samples to be evaluated multivariately, using all variables

simultaneously. The mixing proportions and end member compositions have proven to be

of value with respect to a variety of sedimentological investigations using shape and

size frequency data. Additionally, these algorithms have been used to successfully

-- classify and analyze multichannel data from gas chromatography, gamma ray

- spectroscopy, major and trace element chemistry, and paleotologic assemblages.
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Fuzzy Algorithms for Pattern Recognition
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ABSTRACT

_ This paper contains, first, a tutorial of the basic axiomatic structure

- 0 underlying many fuzzy algorithms for pattern recognition; and second, a

summary of the theory and applications connected with several currently

*" available fuzzy techniques. In particular, we consider algorithms for

clustering, feature selection, classification, and shape description ',' ' K
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I. INTRODUCTION

Mathematical models of physical processes attempt to quantify

hypothesized relationships between variables governing'the process.

Uncertainty has--and in all likelihood, always will--plague our efforts r%

to emaluate the real world with precise abstractions. In this context,

there are at least three sources of imprecision that bear on the

• -modelling of real situations:
'%

Inexact measurements ; (l.la)

Random occurences , (1.lb)

Vague descriptions (1.lc) i

* These have, in turn, led to different types of mathematical models:

- Deterministic ; (l.2a)

Stochastic (1 .2b)

Fuzzy (l.2c) .

'.,.

The first two sources of imprecisionand models incorporating them,

have long since been part of the applied mathematician's stock in trade.

".e pervasive nature of vague descriptions in everyday life is so common

that the human mind assimilates and uses "fuzzy data" almost instinctively.

Thus, one admonishes the learning driver to put on the brakes "a bit

-. %oner" when approaching an intersection--and the student soon learns to do

J:. The utilization of fuzzy information for decision making is so common

tnat one never comes to grips with the philosophical differences between

.-.nnce (flip a coin) and fuzziness (it costs about a dollar) until we

-,,ct-t d computer to imitate our capacity to synthesize and use such information.

"-'. , JAi Zaden LI [,oposea an ten ' , ,tic syster that attempts to
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recognize, capture, and exploit non-statistical uncertainties which may

arise in mathematical models. The basic structure in this system is the

"fuzzy set ". The motivation for continued develcopme'nt of this new

axiomatic structure is simple. Any physical system can be represented

by various models. The "best" results are usually obtained with the

IL most natural model; and in many situations, the physical process is

best described by or generates fuzziness. In particular, fuzzy models

are especially well suited for many problems arising in pattern recognition

and image processing, because data substructures being sought are almost

always mixed--i.e., have ill-defined boundaries (c. f. [2] for an extensive

discussion).

Our objective in this paper iF twofold. First, we present in

tutorial fashion those elements of the fuzzy sets theory that appear

crucial for the continued development of useful models in pattern recognition.

'S Following this, we survey some current algorithmis which may be useful

for pattern recognition and image processing applications within the ocean

science community.

K2. HARD SETS

Sets can be represented using the object property method. If a set is

well defined, its object properties provide a complete description of how to

qualify for membership. Sets are customarily given capital letter names. As

an example, let H be the set of real numbers greater than or equal to 6.

This precise verbal description is represented as:

H =rEIP r r 6, where (2.1)

H - name of set

r - name of generic set member

E - "is in"
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-name of the real numbers : source of set members

... . "such that"

r__> b-precise object property, "r is greater than or equal to 6"

Ihis is a "set" description of H. We often represent this description by a

schematic illustrating the real number line R and H:

,. , I- _

II
0 6H

Another way to describe H is with a membership function. Since every

real number r either is or is not a member of H, we can associate

"belongs to H" with the number 1; and "not in H" with the number 0. We call

the association a function from I to the pair 10,11. This association is

called a "mapping" from IR onto 10,11. This mapping is represented symbolically

- by giving the function a name, say uH, and writing uH: PRb--O,l1, read

u maps 1R onto the numbers 0,1. The verbal description of uH then assumes

symbolic form:

1 when rCH, i.e., r _ 6
uH (r) = (2.2)

0 when r tH, i.e., r< 6)

r " m(tIn U identifies which nur:ter's r are in 11, hence is the membership

tri tior of H. Equations (2.1) and (2.2) are completely equivalent: if H is

known, uH  is well defined; and conversely. Note further that uH also

specifies (as it must) the precise object property necessary to identify members

of H. [he equivalence of these desriptons can ,e illustrated graphically:
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A last way to represent any hard set H is by a graph of its membership

function uH. In the present example, we simply graph the value of uH at

each r E R directly above r itself:

u

-. uH(r)

6 r

Note in particular the abrupt jump from 0 to 1 in the graph of u at

r = 6. This depicts graphically a salient feature of all hard sets: their

edges (or boundaries) are always "sharp" = hence the term, "hard sets."

- A set of numbers which are "about 6" could not have a boundary of this type.

..Finally, a note about terminology. In our example, H is a hard set,

and uH is its membership function. In general, sets and functions are

different types of mathematical objects. But here, II and uH are totally

equivalent (can be constructed from each other). In this instance - although

, . it seems peculiar one can call U the hard "set" !1. Thc point of this

observation? The only mathematical characterization of a fuzzy "set' is its

I Ime:"bership function.

'.
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3. HARD SUBSETS

A hard subset of a hard set is easy to define. Let X be any set,

and A be any subset of X. We write

A C X<='>a E A =>a E X, where (31)

A- name of hard subset

c- "is a subset of"

X - name of hard set

<=> - "if and only if"

aEA-"a is in A"

=> "implies"

aEX - "a is in X"

In other words, A is a subcollection of elements from X. Since A is

a hard set in its own right, it is equivalent to the membership function

uA: X,-10,ll defined by

uA(a )  0; (3.2)

Continuing the example of S2, let A be the set of real numbers greater than .

10 and less than 12, then A is a hard subset of H = [6,-o). Equation (3.1)

-ecus~ (O.IZ) :Cm6,- . Schematically, '.e picture this as:

H ,

A

0 6 10 12
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The graph of uA looks like a "square wave." Note that its graph is

11contained in" the graph of uH . This always happens with hard subsets:

uA uH for rE A because A c H. The portion of the graph of uH which

agrees with uA simply asserts that object properties of elements of A agree

with those of H: the jumps at 10 and 12 indicate the precise refinement

of the pror,-ty (>-6) by (10< r <12). Hard subsets have sharp boundaries

because they are hard sets.

t

A 7 uH1 r--'Fwm----- --"
6 i n 12

Consider now the set B of numbers "much greater than 6." Certainly

5 B is a subset of H - but not in the sense of definition (3.1), because this

refinement of ( :6) is imprecise: it does not indicate exactly where a

"membership function" uB for B should jump up. Consequently, the frame-

P Iwork of hard sets and subsets must be extended if one desires models in which

sets such as B can be manipulated. This intuitively plausible need

motivates the definition of "fuzzy" subsets.

4. FUZZY SETS

Subsets of hard sets are fuzzy when they have no realization as hard

subsets (equation (3.1)). To define a fuzzy subset, we extend the range of

membership functions from the two point set 10,11 to the unit interval LO,1].

If X is any set, then uB is a fuzzy subset of X in case uB " X0-[O,:]:( uB is a fuzzy X)( i a function )
subset of X mapping X [Ol] (4.1)
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The final paragraph of S2 anticipates this definition. We may speak of the

" fuzzy set B of numbers "close to 9," but a function uB which assigns

memberships "in B" to numbers is the only mathematical representation we have

,*. for the vague verbal description.

For xEX, the value uB(x) is called the grade of membership of x in B.

What does uB(x) measure? The extent to which x possesses the imprecisely

defined object properties which characterize B. This is somewhat circular,

because there is no B without u,, and yet uB measures "degree of

similarity' with things in B! Polemics notwithstanding, we can construct

useful models based on this notation. To fix the general idea, let IR be the

hard set of real numbers, and let B be the fuzzy subset of IR of numbers

that are "nearly 7." The oraphs in Figure 4.1 depict several ways one might choose

to represent 3:

Function uI is a hard set one possibility for modelling the imprecise

property "nearly 7" in a conventional way. Functions u2  through u5 are

all fuzzy subsets of IR . u2  is similar to a hard set in that its graph has

discrete jumps at selected base points. No jump, however, is a unit jump:

in other words, no sharp edge delineates "points in u2 " from "points not

in u2. Functions u3 and u4  are continuous: u4  is differentiable on

[0,14]. Fuzzy set u5  is a subset of all of IR . Note that all five graphs

are symmetric about r 7: this seems plausible--it is not necessary.

The value uk(r), k = 1,2,3,4,5, is r's membership in B. Since

u k(7) = 1 for every k, all five sets associate "being 7" with "as near to

, .- 7 as is possible." The situation for r / 7, however, is quite different. We

- coipare memberships in B for several values of r:

7.6

• -.-
".. °76

-.- CC C...........................................



Figure 4.1 Some Fuzzy Sets for "Nearly Seven"

1 6.9 5 .~r 7. 05

01r otherwise

06.95 7.05 1'4 1 ;6.5-7.5

P .86; 5-6.5 or 7.5-9

.71; 4-5 or 9-10

u~) .56; 3-4 or 10-11
2 42; 2- or 11-1

.28; 1-2 or 12-13

.14; 0-1 or 13-14
0 ;otherwise

0 7 14

10 ;otherwise

0 7 14

~r(14-r)/49; 0 r 14(

u 4(r)

0~o the rwi se~

0 7 14

2
u5(r) e-(r
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r = 6.95 r = 6.93 r = 4

ul(r) 0 0

%. u2 (r) 1 0.5600

u3(r) 0.992 0.990 0.5714

u4(r) 0.999 0.999 0.8163

us(r) 0.997 0.995 0.0001

These values invite several comments. Note first that fuzzy set member-

ship increases as Lr-71 decreases: the imprecise property "nearly 7"

J i is ordered by u2  u5 . Thus, uk(P) < uk(q) implies lp-71 ) jq-7] unless

k = 1 - i.e., the hard set u, does not enable one to make comparisons of this

kind. Suppose p = 1000, q = 7.06. Then ul(p) = u (q) = 0, but surely q is

more nearly 7" than p. Since we cannot extract this from hard set uI , this

constitutes a loss of information due to an inadequate model.

Second, we observe that the values of fuzzy membership functions not only

order their arguments; but have magnitudes which allow continuous (decision)

thresholding. Imagine B to be the basketball players in a certain city that

are nearly 7 feet tall. You - the basketball coach at a distant college -

42 decide to scout only those players for which uk(r) >a, 0 <a_ 1. The

height brackets corresponding to several a's are:
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a= 0.90 a= 0.75

u 1 [6.95,7.05] [6.95,7.05]

,-'" u2  [6.50,7.50] [5.00,9.00]

u u3  [6.30,7.70] L5.25,8.75]

Su4 [4.79,9.21] [3.50,10,50]

[6.68,7.32] [6.47,7.53]

Only hard set uI has a fixed height bracket as a varies. The fuzzy

sets correspond to variable height brackets which depend continously on a

How would a specific model be chosen? By past experience - i.e., by observing

performance on known data. Any of the four fuzzy sets might suffice for

the coach's purpose once tested and fixed. Mathematical properties, e.g.,
C., continuity, differentiability, domain, may also be considered when choosing

a fuzzy model. And hard set ul? If ul(p) = 0 with p = 6.949 feet tall,

you would miss this prospect completely.

Figures 4.2 and 4.3 illustrate the major differences between the

hard and fuzzy models discussed in this example.

X :Another question that often arises concerns statistical models of
N'..

this situation.

One may, of course, by experiment or otherwise, determine a probability

distribution for players heights. Indeed, the normal distribution with

m rean 7 and variance T = 1 has for its probability density function

4. (pdf)

f(r) = u5(r) V 2 i (4.2)

WO." t.! Equation (4.2) suggests that f anC u- are 'equivalent -odes '  Te

p-,ilosopnical eaning and inferences one a,/ dra., tnercfro: )o,.ever.
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Figure 4.2 The Distinction Between Hard and Fuzzy Sets

HARD FUZZY
SETS SETS

CONTINSNUMERA

H COTAIN NU ERBAL CONTAINS NUMBERS
.~- .BETWEEN SIX &k EIGHT CLOSE TO SEVEN

SETS

EXACT PROPERTY INEXACT PROPERTY

H= {r:-6< r <8} F= {rr~7

MEMBERSHIP FUNCTIONS

I:r4H GRADE OF
u(r) u (r) MEMBERSHIP
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Figure 4.3 Membership Functions for Hard and Fuzzy Sets

m HARD FUZZY
SETS SETS

S:MEMBERSHIP FUNCTIONS
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,% I I" - F

6<r <8 r,7

UNIFORM INTENSITY *VARIABLE INTENSITY

. '81

* . , - -. - , ", "S ", -* D , , . , ' '' . " ,, ' " J, , ,, .' --, " " * ",,* ° ,- '' , '' , , - ,*



. .. 
4

~~ S* ....

are quite different. To see this, let S = [6.95, 7.05] = ul, the hard

set shown in Figure 4.1. In the present context, S = u1 in an event,

with Pr(u1) = Pr(S) -- 0.04. What information about players heights

does this convey? That, on the average, 4 players per 100 have height

between 6.95 and 7.05. Suppose, for unobserved player p, you had

two pieces of information:

Pr(p F S) 0.90 ; and (4.3a) "

u5(p) = 0.90 (4.3b)

If you had to decide--shall I scout p?--using (4.3a) or (4.3b), which

would you use? From (4.3a), one can conclude that,with 90% certainty,

the height of p is in [6.95, 7.05]: but (4.3a) also leaves a good chance

that p is, say 4 feet, 6 inches tall! On the other hand, we have from

(4.3b) and u5(p) that p's height is--with 100% certainty--in the range

[6.68, 7.32]. The point? One can use either model as a basis for

decisions; but surely the underlying types and amounts of information

are different. As a final note, we observe that after observing p, we

have:

S. [1 695 p 7 .05'
Pr(pE S/p) : 5 ul(p) ; (4.4a)

0 ;otherwise

u5 (p/p) u5 (p) 0.90 (4.4b)

That is, statistical uncertainty is altered by observations; fuzzy

uncertainty is not: What (4.2) really sugnests is that normalized pdf's

-Tay provide, throuqh their individual values, information which can be

usezu] wrmen interpreted j nor-tfldrd .,a,.
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,i ~'5. UNION, INTERSECTION, and COMPLEMENT

W.

Let X be any hard set, and A, B be subsets of X. The union and

intersection of A and B are:

AU B = X E X: XE A or XE B (5.1 a)
%

An B = XE X: XE A and xE B (5.1 b)

The union symbol ( U) is often read "or;" the intersection symbol (() as

Z.e "and." The complement of A in X is

A .xE X: x A[ (5.1 c)

-. The complement symbol () may be read as "not in."

It is both convenient and necessary to formally recognize the set with

no obects as a subset of X. We call this set the empty set, and will

denote it by the symbol (0). If Ac X, A CX by (5.1 c). Substituting A

Sfor B in (5.1 a) and (5.1 b), we have

AUA= X E X: xEA or xE A =x (5.2)

A A = x E X: xA and x 6 (5.3)

._If A is itself non-empty, we have the three conditions

A ;(5.4 a)

AU AX ; (5.4 b)

n Af = (5.4 c)

- 83
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for the pair (A,A) to be hard 2-partition of X.

Let X be the set of real numbers r for which 0 e r .! 6, i.e.,

X = [0,6]. Let A = [0,3], and B = [2,5]: then A = (3,6], and:

i -

. 0 1 2 3 4 5 6

" I X = [0,6]

I A (3,6]CX

SA [0,3 X

1,1 B -L2,5] X

-V.°1,A U B [0,51 c X

Afn B =[2,31 c X

FL

K"A LP A

A non-overlapping partition of

84
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m L
In this example, each of the hard sets involved has a unique membership

Sfunction. The operations (U,l,) have logical equivalents in functional

S combinations: we can guess them by considering graphs of the membership

functions:

S" I 
II

0 1 2 3 4 5 6

.%I I I I I 6 u---A

II- ,I ullA

,u B

0 3 6

1 A UB
o 3 6

U

I A nB

0 3 6

66

U U

ah° imQ ibEh

16
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'U

For the union, we take the maximum of uA and UB: for the intersection, the

minimum: for the complement, we subtract uA from 1:

uA UB(r) =max { uA(r), uB(r) }  ; 5 .

UAfn B(r) min uA(r), uB(r)} ; L - -

LJ_(r) 1 - u A(r)
A

These equations are entirely equivalent to (5.1 a- 5.1 c). They illow us tc

write equations (5.4) for a hard 2-partition of X as functional equations:

uA /0; (5.6 a)

uAU l ; (5.6 b)

UAfl = 0  (5.6 c)

where 0(r) = 0, 1(r) = 1, i.e., 0= u0 ; 1 = u Equations (5.5) and (5.6)

suggest a reasonable way to define an algebra for fuzzy sets that includes hard

models as a special case.

6. FUZZY UNION, INTERSECTION, and COMPLEMENT

The membership functions of A U B, A 1n B, and A are, for hard subsets

A and B in X, known automatically, because the only questions concerning

membership in these sets is "in or out," i.e., 0 or 1. For fuzzy subsets,

however, one faces a choice: if uA(x) .62, and uB(x) .39, what values

should be assigned for uA U B(X), UA B(x), and u W(x)? These functions

should map X P--[O,l]; and, in addition, should reduce to the definitions of

S5 whenever A and B are hard. Functions that satisfy both of these require-
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* ments are obtained by imitating equations (5.5): for fuzzy subsets A and B of X,

* we define

B (x) maxfiuA(x),u (x)Jf(-1a

u uAfn B (x) =minju A(x),uB(x)' ; (6.1 b)

uT x) =1-uA(x).(61c

These definitions are not unique: they do, however, endow the subsequent

* axiomatic structure with useful properties for pattern recognition models.

To illustrate these definitions, let

X =numbers between 6 and 10 ;X =[6,10]

* A =numbers close to 7 in X

B =numbers close to 9 in X

u A(x) x - 6 ; 6 < x :s70S(10-x)/3 ; 7 < x :! 10I

f (x-6)/3 ; 6 < _ :

B8 x 10 - x 9 x<10

Gah of uA and u dre found by choosing the max and min of uGraph ofB AfnlBA

and uB at each x C X:

uA uB

6 7 8 9 10
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. . . . . . . . . . . . . . * .* .* ** . . . . . . . . . . .7 . .



UAU max

8

.UfB - min

* 8

The complement of uA is the difference (l-UA):

A U

6 7 8 9 10

7

K>No that uA() U(8) u u(8) U uf 8(8) 213 0.66. The

-. er P8 has the highest grade of membership in the fuzzy intersection of

ini H, Thlis is interpreted as: 8 is the number in X which is "most
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% nearly 7" and "most nearly 9." Now consider the fuzzy union of A andA

Using equations (6.1 a) and (6.1 c), we have

u A U (x) = max:.u A(x),l-u A(x)7.

For example, u A U T(6, max 0l}=1; uA U-(6.5) =max {0.5,0'.5 0.5.
Th4AL

Telatter value shows that equation (5.6 b) cannot be true for the union of

*an arbitrary fuzzy set A and its complement, i.e., uAUil The

same argument applies to the intersection: u A n-( 6  min {0,1 = 0;

uA~~6.) m 0.,.1 .,so, in general, uA 0 Equations

(5.6 b) and (5.6 c) do not generalize - this is, of course, exactly as we had

0planned! To see what has remained constant, let C [6,7] and C (7,10]

partition X: C nlC 0; C UT X. We compare the graphs of (u,,uTj to

(uOTu' in terms of the areas of uc and uA under ux 1

Hard 2-partition of X

''''''< <: .. .:. .:. . ..:. .....

. . . . . . . . . . . ...............

6 710

Fuzzy 2-partition of X U

u A

A

67 10

Evidently hard reth (rT fivide tre, areut undor uA abruptly at x 7,

whereas (A,A) partitilqn it in ui cnnt iritous fas~hion as a function of x. That
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is, hard and fuzzy 2-partitions of X correspond to different kinds of hard

2-partitions of the area under the graph of u, (different ways to allocate

membership in partitioning subsets). The illustration above shows how to

circumvent the apparent dilemma caused by uA U 1; UA uA 0. Requirement

(5.6 a), that uA # 0 is equivalent to having non-zero area under uA (and

hence uT-): this is met by both (A,A) and (C,C). And secondly, we see that, M.

at each x E X

UC(x) + u'x) : uA(x) + UAx) : 1. (6.2)

This equation, true by definition for two fuzzy subsets, suggests a

reasonable way to define and interpret fuzzy c-partitions of X for c > 2

partitioning subsets. Conditions (5.6) can be replaced by the two equations

uA O (6.3 a)

uA + u/\1 (6.3 b)

Equations ( 6.3) are equivalent to (5.6) for hard sets via (5.5), and consistent

for fuzzy sets via ( 6.1 c). Accordingly, we shall call (A,A) a fuzzy

2-partition of X in the sense of equations (.3). Figures 6.1 and 6.2

Sui irarize rgraphically the important distinctions between hard and fuzzy

2-pirtitions of X.
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Figure 6.1 Hard and Fuzzy 2-Partitions of X
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Figure 5.2 Hard and Fuzzy Partitioning Membership Functions
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.' 7. MATHEMATICS OF c-PARTITIONS
.I

3 Let X be a set. A collection of hard subsets fA1 ,A2,...,A c  of X

is a hard c-partition of X if

Ak for all k (7.1 a)

c
UA = X (7.1 b)

k=l k

A l Ak = 0 for all j f k ; (7.1 c)

These equations reduce to (5.4) when c : 2. Now let uk be the membership

function of Ak9 so that, for k = 1,2,.. c,

UkOx) k (7.2)
U0; otherwise (

-'*_ Then A1,A2 ' . Ac  is equivalent to Ul ,u2  .. ,uc j In particular,

equations (7 .1) are equivalent to

Uk 0 for all k 7.3 a)

-' Uk = 1 7.3 b)
k=l

These equations reduce to (!D.3 ..men c= 2. Since ik and Uk are entirely

S " equivalent, we may call the set of functions luu 2.... u a hard

c-partition of X.

Each uk in (7.3) maps X into jo,11. Suppose now that one or more

of these functions maps X into [O,lj - i.e., is a fuzzy subset of X.

In this case, equations ( 7 .1) are meaningless; but conditions (7 .3) can

still be enforced. Thus, we define a fuzzy c-partition of X to be any set
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of membership functions on X into [0,1] that satisfy (7 .3). This definition

yields a fuzzy model with the desired properties, and reduces to the hard model

when all the subsets are hard; but it allows partial membership of individuals

in one or more partitioning subsets when physical characteristics of objects

imprecisely define their individual identities. As an example, let

3
X = [6,10] = [6,7) U [7,9] U (9,10] U C

k=l

A1 = numbers close to 7 in X

A2 = numbers close to 9 in X

where the membership functions of A and A, are scaled down to (1/3) of

their values in the previous example:

x-6 -
3 ; 6 < x < 7

U1(X) =

1 (10-x)/9 ; 7< x <10

(x-6)/9 ; 6< x < 9
u2(x) =-,

(l0-x)/3 ; 9 < x < 10

Iow u (x) + u2(x) < 1 for every x X - no object in the original data

has full membership in X. To complete the area under ux , we use (7.3b)

to find u3 (x) =  1 - u (X) -u

6 <x < 7: u3 (x) = 1 - (x-6)/3 (x-6)/9

= (33-4x)/9

7 < x _s 9 : u3 (x) 1 - (l0-x)/9 (x-6)/9

= 5/9
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: 9 <x<O: u3(x) 1- (10-x)/9 - (10-x)/3

(4x-31)/9

((33-4x)/9 ;6 g x 7

> u3 (x) 5/9 ; 7 x -9

(4x-31)/9 , 9 x 10

For example, at x = 8, u1(8) 2/9, u(8) = 2/9, u.(8) = 5/9, Uk(8) = 1.
u

Graphs of the membership functions (ul,u2 ,u3 ) are shown below. A rough

interpretation of the physical ;eaiiv of u3  can be given in terms of the

- ill functional equation u- 1 - u -u:

numbers numbers (numbers\

-u 3 = |close to - close to)
x 7 in X 9 inX)

U - u1  -

I

- (numbers in X not close to 7 and not close to 9)

The graph (of u3 ) shown below is compatible with this interpretation of u3 .

6 7 8 9 10

To exemplify the difference between this fuzzy 3-partition of X and any

*hard one, let C1  [6,7), C2 =[7,9], and C3  (9,10] partition X, with

4 K
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hard membership functions w1, w2, Vj3 , respectively. Again comparing these

partitions in terms of how they divide up the total membership in X, we

depict the areas under ux which are accounted for by each-membership

function as follows:

Hard 3-partition of X U

F, Fi, I

_ _ _ _ _"" \ , \\ \\ \\ r! -

6 7 9 10

V.,Fuzzy 3-partition ofx X

" .. .... ... . 2

\ . \ " . . . .- . . .". ..

v.',

6 7 9 10

Observe that hard c-partitions again subdivide the total membership with

hard boundaries (vertical unit jumps)* whereas fuzzy boundaries provide a

means for continuous, partial membership allocation.

8. PARTITION MATRICES

Let X = xl, x2,.., x I be a finite data set. Each 'point' x. C X

>iqht be almost any sampled feature of a physical process: a digital picture

- atrix, medical record, sonar signal, or polygonal shape descriptor are a

fW... e~amples. Let (u], u2,.., ut), 2 i c r n partition X, and denote by
e[mp.s 

,e ! 
" '

9-*".'~'- 9, 3
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Ukj the grade of membership of x. in class k, i.e., for all k, j define

_. Ukj = Uk(X.) = membership of x. in class k (0.1)

* 'Next, array the (cn) numbers ukj as the entries of a cxn matrix

S U = [Ukj]:

..

U •U11  1~2 *lj uin

U2 1  u22 ,2j u2,

U =0(membership of every
U" U .. u owk in subset k )

,.mUk• Uk2O •kj Ukn ro A

U U U
, cl Uc2 ci cn

column j:(membership of xj in

\each of the c subsets)

The constraints which correspond to equations (7.3) for matrix U are

easy to deduce. uk 0 simply means that each subset has some membership,

hence, each row of U has a non zero entry, or, since uk - 0, all k,j, that
Ik

- each rowsum is positive:

n
uk ,'O <> . u kj>0 for all k (8.2a)

j~1

Equation (7.3b) requires the sum of the membership of each x to be 1: for

the matrix U, each column sum is 1:

c c
" uk  <=> 5 u 1 for all j ( 8.2b)

k kj

. . . .. . .. • . .... .. ." .. . .'.".. . . •.... .. .. . * . ", ' ''. '' ". .

',.~~k~ k- ' :., .. , .- ,".- :.- - : •_ - " ", ~ , ,,, - ',..,ai , . -a,..... ,.. ", ,, 1 ..



Finally, we know that (uI, u2,. u ) is a hard c-partition of X only wheni'.2:- . .. .9 c

every Ukj E 10, 11 ; and is a fuzzy c-partition of X in case any Ukj C [0, 1].

Adding this requirement to those of ( 8.2) yields definitions for partition

-' ."matrices which are entirely equivalent to ( 7.3): The sets of all possible

(cxn) matrices corresponding to hard and fuzzy c-partitions of X we call M

and Mf• respectively:

= u. 10, L L u 0; 5 u I -- HARD. (8.3a)

f1c kj , kJ ; k j

= U -.i 0 1;..k 0; k.=l..UZY (.b

To illustrate, let X be a set of two peaches (xI, x2); a nectarine

(x 3 ); and two plums (x4, x5 ). For c = 2, if the peaches and plums are

separated correctly, there are only 2 hard 2-partitions of X:

x
3F: 1

peaches .... ........ 1 1 1 0 0
'. ".U l  = and-

pl umns ............... 0 0 1 J1 n

X 3

peaches.............[ 1 0 0 0

:, I u s .. . . . . . . . . . . . . . 00 ( 1 -

,e;bership value uI  I in U 1 -his assijrns the nectarine to the peaches

subset. In U2, exactly the opposite occurs. In either case, this illustrates

,I serious deficiency of hard 2-partitions of X: they cannot portray partial

".relationships between individuals in the (itd A much more realistic model
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- of the physical situation is given by fuzzy 2-partitions of X. One could

have, in this case, a partitioning such as:
XtI x3

0.96 1 0.61 0.05 0.03

VI0.04 0 0.39 0.95 0.97

Loosely speaking, about 61 of this nectarine's features are "peachlike";

and 39:. are "plumlike". Is U3 more realistic than U1 or U2? Yes. Is it

more useful? Yes. One cannot threshold decisions against O's and l's. Hard

models present a much higher potential for classification errors, because

O's and l's afford no means for deciding when to take a "second look". To

emphasize this point, suppose the matrix U3 had for its major classes "pictures

*' with tanks" and "Dictures without tanks". Then pictures 1 and 2 almost

certainly have tanks, while 4 and 5 do not. Picture 3, however, has memberships

in these classes which might be -based on past experience with similiar data-

regarded as "suspicious". One could, e.g., decide to expend extra computing

time on A3 , before rendering a decision about the contents cf the picture.

S Figure 8.1 illustrates how this situation might arise. In the diagram,

x3 is an armored personnel carrier (APC): it has some very tanklike features

-.- (round wheels, treads, profile); and some houselike features (windows,

profile). Accordingly, the observed characteristics of an APC will probably

contain a mixture of the dominant characteristics of tanks and houses.

In this example, the advantage of fuzzy c-partitions--the ability to defer

a decision based on non-distinctive membership values--is quite clear.

underl 2:any -zy rodels for pattern reco riicr" and irva:e processing.

Interested readers may consult [2] for a detailed discussion of variations,
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Figure 8. 1 An Exariple of Mixed Substructures
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refinements, and alternative constructions arising from this basic

foundation. We again emphasize that the choice of a particular model

(and algorithm to utilize it) should be made with a view towards casting

the physical situation in a most natural quantitative framework. We

turn now to a summary of recent work and specific examples which exemplify

- "the utility of this new type of mathematical model.

. 9. THE FUZZY C-MEANS ALGORITHWIS

In this section we discuss the fuzzy c-means (FCM) clustering

algorithms. These algorithms have been utilized for clustering, classification,

and feature selection in a wide variety of applications. Software for these

algorithms is currently available in several high level languages, so

the discussion below centers on the theoretical foundation of the methods,

rather than documentation for a specific program.

A classifier is a set of c scalar fields (nr di crimirant fijncfirn

from feature space lRw-R , say jdl, d2,.. d t whico partition

1R w into a c hard decision regions, say Il D 2  .. Dc, according

to the requirement that d(.) > di(x) for all i and 11 x ;E Dj.
Ii Any set of functions wdhich does this equips fR with the decision rule

decide x E X x i

* K > d(x) > d (x), 9.1

all j .

The use of ( 9.1) in connection with computerized classification

of feature vectors x E is obvious: what is not so oLv u 5 hcO.
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to choose the functions {dj}· Usually, one secures a 11 training" 

data set X= {2i' ~2 •... , ~}crRw of feature vectors drawn from the 

physical process of interest, and tries to identify an 11 0ptimal 11 set 

of d. 's--i .e., d.'s ~,o;hich minimize the probability of making a wrong 
J J 

identification. There are two kinds of probability of error: theoretical 

and empirical. Hodels based on minirilizing theoretical error rates enjoy 

favor in adademic circles, but do not necessarily outperform classifiers 

which are theoretically sub-optimal, because finite samples need not 

possess asymptotic properties. Consequently, empirical error rates--that 

is, observed performance on labelled test sets--are a more useful measure 

of expected classifier performance than are theoretically predicted 

probabilities of error. When using the empirical error rate, however, 

one should guard carefully against generalizing observed classifi~r 

perforn1ance to other samples; or 1·10rse, other physical processes. The 

best approach to take in classification is to study the problem at hand, 

and then try to choose a design which minimizes the empirical error 

rate for label led samples of the process in hard. 

The example to follow is condensed from reference [4]: it compares 

the performance of a well known deterministic classifier--the k-nearest 

n~1ghbor (k-NN) design--to a fuzzy 1-nearest prototype (1-NP) model. 

The k-r;rl design is a sirnple classifier based on measuring the distance 

w (Euclidean or other'.-tise) in feature space fR between any observed~ 

and its k nearest neighbors in a-set of labelled data. -1:-et X be hard 

c-partition, say X= UX;, l:S i ~ c, so that each~ E X ber1rs the 

L:tJr-.:1 ()fits population class. The deci:,ion rule for the k-rm 

1:uclcl l'i fonnulated in ten::s of U1e given tlat·d c-partition of X: 
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among the k-nearest neighbors

decide x E class i <=2 of x in X, class i is observed (9.2)

more often than j, j=l, c, j~i.

Here k is an integer, 1 A k n. s n ( 9 .2) converges

(in probability) to the "Bayesian classifier", which is theoretically

optimal for a well defined probability of error based on the assumption

that X is drawn from a mixture of c multivariate probability density

functions. Accordingly, the k-NN classifier is a popular design.

Two drawbacks: n never '"wao'; and X may not be drawn from the hypothesized

mixture. The geometric idea of the k-NN classifier is easy to illustrate:

Slet x(i) be observation j in X, labelled as class i, and, to be

concrete, let k=4:

I (1) (2),

• \ x(2) /

" 4-NN-

v-- -"

" Since class 2 occurs twice, while classes 1 and 5 occur once each in.-

';'" k=4 tries, x is identified as a class 2 object. The functionslj
"" ' -- k- NN

have not been identified, but are easy to define once X is labelled.

"" A I-NP classifier operates by minimizing distances in IRw from

,.:. object x to one of c prototypes, say Vv_,.. vc I where v
-1 

"*
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class i. If X is labelled, and n is large, the usual prototypes

chosen are simply the geometric centroids of each Xi;

v i ni  (9.3)

~E Xi

where ni is the number of feature vectors in Xi. 1: S i - c. The

quality of the data (amount of noise), features chosen, choice of

distance measure, and reliability of observed unidentified vectors
S..-.I

all affect the performance of the 1-NP classifier defined by the

v.i 's, which may be written as [5]:

-i-

- ,e ,di(x) = xi vi> 1 i-  --- c ,(9.4)

where < > and lie'1 are, respectively, the chosen dot product

and norm on IR w. Implementation of (9.1) with (9.4) is illustrated

as follows:

/,V.

-1 
0.

'**+ I W x
x

0/

If X is unlabelled, the vi's cannot be calculated with (9.3).

In this case (and often, even when the vi s are labelled), some

other method for estimating good prototypes is needed. Many methods

exist (c.f. [5]): each produce a set of v,'s optimal in some

mathematical sense. But once the v's are fixed, equation (9.4)
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always yields a I-NP classifier. Thus, many I-NP classifiers exist,

.i all of which partition IR into c decision regions. The choice of

a particular design (i.e., set of vi's) ultimately rests with the

." ~. empirical error rate--which one works best?

One way to generate vi 's--called fuzzy prototypes below--is by

P the fuzzy c-means (FCM) clustering algorithms. Let U be any fuzzy

c-partition of X; and let v = (v., v2,'"' V ) be a set of c "cluster
_ 1 _2 - -C

centers" in IR For 1 < define

SJm(U' v) = n (u2k' - v 2 (95)
m ik

k=l i=l

" being here any inner product norm on JRw. Local minima of

J m may identify good fuzzy c-partitionings of X, and must satisfy

(c.f. [6]):

/ (Uik) (9.6a)
k~l k 1

- Uik : - ) ; m < I (9.6b)

Equations (9.6) provide a way to seek local minima of J via

iterative looping; and in particular, "good" geometric configurations

in X lead to good prototypical v's with (9.6a). The advantage of-l

9.6a) is this: fuzzy NP's are determined algorithmically in conjunction

7 with fuzzy c-partitions of X--and fuzzy c-partitions of X have soft

.4
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boundaries, so are relatively insensitive to noisy data and imprecisely

.4'. defined subclasses. This can endow classifiers based on (9 .1)

and ( 9.4) using fuzzy prototypes ( 9.6a) with better.error rate

properties than those based on hard c-partitions of X.
*.-

EXAMPLE 1. Reference [4] discusses a data set of n = 300 binary

vectors, each containing 11 measured symptoms of a patient with one

of c = 6 stomach diseases. This data was also processed by Toussaint,

who reported in [6] an estimate of the expected empirical error rate

for all k-NN classifiers (as k, n-.- ) that use the 300 labelled

samples for the neighbors. His estimate of the error rate (presumably

the optimal rate of a Bayesian classifier!) was 49%. Using the

same data with a fuzzy 1-NP design based on (9.1), (9.4), and

/ ( 9.6a), the expected error rate reported in (4] was reduced to 39%.

For this data set, then, a fuzzy 1-NP classifier yielded more accurate

results than all k-NN classifiers. This implies (but cannot prove) r..

that data generated by this physical system are more amenable to fuzzy

designs than to conventional ones. Presumably this is due to the

ability of fuzzy c-partitions to accomodate imprecisely defined and/or

noisy observations in this data.

A second problem considered in [4] which uses the data in a

different way concerns the relative efficiency of the features measured

for subclass separation. The actual values of prototypical features

of the vectors v. calculated via (9.6a) can be used--for binary

data--to rank the discriminatory power of the various measurements.

. The object of "feature selection" (the usual term for this undertaking)

is to reduce the dimensionality of feature space with no loss in
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classification power, thereby decreasing computational complexity

without sacrificing classifier performance. The fuzzy feature selection

method described in [4] reduced 1R11 to IR5 wi-th no appreciable

increase in expected error rates. Further, the features selected

. were identical to the ones chosen by a hard method discussed by Lee
n

in [7].

This example supports an important conclusion: when data has

* . distinctive substructure, hard and fuzzy models can and do yield the

• .same results (feature selection): but if substructure is imprecise or

noisy, fuzzy partitions may provide better results than hard ones.

* 4

EXAMPLE 2. A different use for the FCM algorithm embodied by

>? equations ( 9.5)- ( 9.6) has been discussed in reference [8]. This

application of fuzzy partitioning also involves classifier design:

in particular, Bayesian classifiers, the theoretically optimal scheme.

Let data X be drawn from the mixed parametric w-variate probability

density function (pdf)

cf 4; ) 1 pi g(x; (9 (.7)

I i'i" where G ' .. ,Oc is a vector of parameters; pj prior

probability of class j; and g(x; )= pdf of class j. A Bayesian

classifier for X is any set of c scalar fields Id which are

,% .4monotonic functions of the posterior probability of class j given x:

d.(x; 0) = F(p(jlx; 0) = F(pj.g(x; .) /f(x; G)) (9 .8)
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If the parameters [ are known, (9 .8) with (9 .1) yields

the theoretically optimal Bayesian classifier, say IdiB , which

minimizes the error rate (volume under the "tails" outside each D B

defined by djB with (9 .7)). The function F in (9.8) may be, for example,

the identity on IR ; often, the logarithmic function is used for F.

If 9 is unknown, one uses X- a sample

from ( 9 .7)--to estimate 0. Again, we call this "training" the
classifier. If X is labelled, the best method for estimating each

0. with X. is probably obtained by uncoupled maximum likelihood

estimators (MLE). If X is not labelled, the MLE for (a ) are

coupled, necessitating numerical solutions. The equations for

both cases appear in [8]: they are rather complex, so are omitted

here. If 9(x; 4.) is multivariate normal with mean._j, covariance

matrix V., then G. = (pj, 44j , V.j) is coupled through Baye's rule

to the matrix of posterior probabilities P = [p(4 j)], 1 45 k sn,

1 _ j :_ c, and MATRIX P IS A FUZZY C-PARTITION OF X! Iteration

through the ML equations, viz., . V. D. P to secure
*C;

estimates for the parameters of the component pdf's is very time-consuming:

e.g., each step of the MLE loop must construct c scalars; c w-vectors;

c wxw matrices and their inverses; and the cxn matrix P. The results

reported in [8] supported two conclusions: (i) iteration through
.J-.

(9 .6) provides fuzzy c-partitions which are excellent initial guesses

for P at a significant savings in time and expense compared to starting

ML iteration from scratch; and (ii) optimal pairs (U, v) for Jm are

in fact reasonable estimates of (P,_) without resort to ML at all.

*11
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In other words, parametrizing ( 9.8) via fuzzy c-means with X may be

more efficient than with maximum likelihood. The resultant classifier

might be called a fuzzy-l-NP Bayesian classifier: [81 shows that it

is a very efficient estimate of the ML-l-NP design.

10. SHAPE DESCRIPTION

Let B = b l' b2""' b cm 2 be a data set of ordered boundary

coordinates of an arbitrary planar shape. Data of this type arise

in many image processing applications: see, for example, references

[9] and [10]. One way to analytically describe the boundary of a

planar shape is with a set of c approximating line segments

IL, = vi + tdi: ai t--bi; 1 isc, where vi is a point on

Li (its "nucleus"), and A, is a unit vector parallel to Li (its

"direction"). Many approaches exist for generating an "optimal" set

of Li's (see reference [10]). Reference [9] describes in detail

a fuzzy model for generating such sets of "edge descriptors". This

algorithm is based (in part) on a generalization of the FCM method

discussed in S9. A weighted least-squared errors function of

three sets of variables, viz., a fuzzy c-partition U of B; a vector

v= (V , , . ) of segment nucleii; and a vector d = (d 1l ,..., d

of segment directions, is iteratively minimized to generate "optimal"

linear fuzzy clusters in B, together with a set of c line segments that

. .are a good (orthogonal) least squares fit to the data. This algorithm

: *2 ..is now fully operational, and seems

to perform at least as well as the best conventional algorithms

reported in [10]. A rough idea of its relative performance

10
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can be inferred from the illustrations depicted on Figures 10.1

and 10.2, which show a data set B of 124 points drawn

randomly from the continuous cell outline shown as Figure 4 in (10].

View (a) is the raw data. View (b) shows the polygonal approximations%

to B generated by Ramer's algorithm (c. f. [17]) with hard orthogonal

least square fitting (after Fig. 5 of [10)). The solution of view

(b) has c = 9 segments. We observe that the solutions of views (b)

and (c) taken from [10] were obtained using a different sample of

124 points from the cell outline than those shown in view (a). Since

j the cell has 64 vertices in a relatively short perimeter, the two

samples have, in all probability, about the same visual configurations.1

A comparison of Fig. 4 [10] with view (a) confi ms this, as both data

sets have marked "gaps" in the same places.

View (c) shows the output of the split and merge method described

in [10) (after Fig. 7 of [10]). This solution has c = 10 segments, and

seems to be a substantial improvement over the Ramer solution. View

(d) is the output of the fuzzy shapefittini algorithm when applied

to data set B. Here, there are c = 16 segments, so the resolution

is understandably better. Reported mean squared errors in [10] are

ambiguous, so do not afford a means fcr direct comparisons. However,

it seems safe to say that the fuzzy output is, for the data set

shown in view (a), a visually appealing fit that reproduces the shape

of B somewhat more faithfully than the hard outputs depicted in views

(b) and (c). A more direct comparison in terms of both time and

accuracy will be available soon.

4.t4

1The original data are not available. The algorithms used in [10]
are currently being coded to afford a more direct comparison of

4 accuracy and efficiency.
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Figure 10.1 Shape Description

Ref [10] PAVLIDIS,T., and HOROWITZ,S. "Segmentation of Plane

Curves," IEEE Trans. Comp., c-26,1977,236-242.
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Figure 10.2 Shape Description
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Another aspect of shape description algorithms is their sensitivity

to noise. A slight variation of the algorithm is described at

length in references [18, 19]. In order to understand the example

below, we write out the functional: for m E [1, ) ,et

n c m 2 2
v m(U , d) I I (uika) (D ik + (1 -a) dik , (10.1)

k=l i=l

where a E [0, 1] is a mixing coefficient, and

- Dik = the orthogonal distance from to Li

di  = the Euclidean distance from to v on L

The algorithm finds good shape-approximating segments by

minimizing the function in (10.1). Figure 5 of [18] is

. ireplicated as Figure 10.3. In %iew (a) are 43 points who

clearly made up a set of two straight lines (the "jaws")--but with

3 noisy points. The effects of the 3 noisy points are quite severe:

the lines shown in view (a) are the terminal lines from BH with

initialization at the correct answer! In other words, the squared

errors due to the 3 noisy points are sufficient to draw one "optimal"

line away from the main linear substructure in the data. Here,

the weighting exponent m in (10.1) was m 2.

View (b) of AII.3 shows the terminal lines associated with BH

! - output for the same data set at m = 30. The fit to the main substructure

* "is nearly exact--i.e., the effects due to noise shown in (a) have been

almost entirely eliminated. How do fuzzy memberships achieve this

,.6 . filtration? Consider the effect of increasing the weighting exponent

Zm on columns of U. Because noise is not "close" to the linear structures

113
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Figure 10.3 Shape Descri ption

3 NOISY POINTS_____

DIVERGENCE TO,,a
POOR FIT, M 2

'Sw

*After Fig. 5, Ref [18)
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in the data, noisy points will have higher partial membership in

several lines, rather than dominant membership in one. For example:

b. on jaw b in noise
J -k

: !~ (:~) 10098

(3894 (00004)

* The point? If Vj has a strong affinity for membership inu

)-"

(and Li), then Ukdominates the values in column k of U. Raising

4,

-: ( ik) Uikil

these values to a higher power of m will drive the u jk.'si i to

zero, leaving only u ik to affect J 'On the other hand, noisy

* memberships will all go to zero, because one entry is not dominant.

* In this way, membership itself can be used to filter noise. There

* is, to cur knowledge, NO analgous hard method which possesses this

4098 11

- "

potel aoin gly tfb hs abilogfiity fuzz memes hi uiood

S .Sections 9 and 10 document several recent uses of emerging

* i models based on fuzzy sets. From the point of view of PAME users,

the fuzzy algorithms of sections 9 and 10 are perhaps most

widely tested. and are currently available in useable form. These

algorithms have a lot of flexibility, and can be adapted to a wide

e@ ".
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variety of applications, many of which were discussed by speakers from

the Ocean Science community.

Many other applications of fuzzy algorithms are now appearing

in the pattern recognition literature. One of great utility to several

workshop attendees concerns (image) enhancement of ocean scenes based

on sonar data. There are, of course, many conventional enhancement P

techniques. Reference [11] contains a nice comparison of a fuzzy

method based on relational iteration that seems to work very well.

Figure 11.1 illustrates this graphically (hard copy reproduction degrades

all of the photographic results). It would be premature to say that

fuzzy enhancement schemes will be consistently more reliable than those

now in use. On the other hand, the nature of enhancement suggests that

fuzzy models are a natural vehicle for this application, so this area

seems ripe for accelerated development. Another area that will see

rapid strides is segmentation of digital images.

~5" In retrospect, the success of the workshop will hinge on initiation

of specific contact between members of the ocean science and pattern

recognition communities. The potential for fruitful interaction is

enormous-. the realization of this potential is our responsibility.

4Z
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, Figure 11.3 Fuzzy Image Enhancement

Ref. PAL,S. and KING,R. "Image Enhancement Using Smoothing with

Fuzzy Sets", IEEE Trans. StIC-11(7), 181, 494-501.
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The Use of Satellite Observations of the Ocean Surface
in Commercial Fishing Operations

D. R. Montgomery

Jet Propulsion Laboratory
California Institute of Technology

M 40 4800 Oak Grove Drive
Pasadena, Calfornia 91109

cv'~ ABSTRACT

S0 Commerical fishermen are interested in the safety of their crews, boats andogear, and in making the best catch for their time and money. Rising fuel costs,
* increased competition from foreign fisheries. improved knowledge about fish

habits and the new 200-mile economic zone have all had an impact on the U.S.
fishing industry. As a consequence, the modern fisherman, more than ever,

Srequires reliable and timely information about the marine environment.

This paper describes an experimental program to utilize satellite observations
of the ocean surface, in conjunction wit conventional observations and

*products, to prepare specialOFisheries-Aids charts for daily radio-facsimile
broadcasts to commercial fishermen. These special fisheries products aggregate
a broad set of ocean observations, including ocean color structure, to depict

- oceanographic conditions of importance to commercial fishing tactics.

Results to date have shown that improved safety at sea and decreased fuel costs

can be achieved through the applied use of these special fisheries charts.

INTRODUCTION

Commercial fishing on the high seas continues to be economically risky and
* physically dangerous. While fishermen are interested in safety at sea and in

catching the most fish possible for their time and financial investment,
* escalating operating costs, especially those associated with fuel, labor and

insurance continue to erode the economic viability of the industry. Successful
fishermen continue to be those individuals that look for and incorporate the
latest and best technlogy and information to enable their operations to be more
ef fic ient. This includes the increasing use of analyses and forecast of

- oceanographic and meteorological conditions that affect their operations at sea,
and application of fisheries research findings to search and fishing efforts.

*Accordingly, the modern fisherman, more than ever, requires reliable
- environmental information.

To meet this need. the Jet Propulsion Laboratory, with the cooperation of
the Ocean Services Division of the National Weather Service, has sponsored an

*experimental program involving the preparation and distribution of fisheries-aid
products for the U.S. West Coast fishing industry, prepared with the aid of

* satellite observations of the ocean surface, including ocean color structure.
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BACKGROUND

In June 1978 the Seasat satellite was launched by the United States as a
"proof-of-concept" mission to obtain measurements of ocean-surface conditions
from satellite altitude. This mission proved conclusively that wave heights,
surface-wind velocity, and sea-surface temperature measurements can be obtained
from space under all-weather, day-night conditions. (1)

Scientific and commercial studies (2) of Seasat data, along with recent
fisheries-oriented studies of a Coastal Zone Color Scanner (CZCS) currently in
orbit on the Nimbus-7 satellite, have identified promising techniques that may
be used to improve the analyses and forecasts of ocean-surface features (i.e.,
winds, waves, sea-surface temperatures, and color boundaries). These studies
have shown that such techniques may well be operationally applicable to
commerical fishing activities.

FISHERIES DEMONSTRATION PROGRAM

With support from both the National Aeronautics and Space Administration
and the NOAA-National Weather Service, an experimental demonstration program

i (Figure 1) is being conducted on the U.S. West Coast to assess the utility and
benefit of specially prepared environmental charts, tailored for commercial
fishing operations. These experimental charts, supplemental to the operational
charts provided by the National Weather Service, are prepared on a daily basis,
utilizing operational products prepared by the Navy-Fleet Numerical Oceanography
Center (FNOC), Monterey, CA, and experimental ocean color charts generated by
the Scripps Institution of Oceanography - Visibility Laboratory, La Jolla, CA.

iV The products prepared by the FNOC utilize both conventional as well as
satellite-derived observations, while the ocean color charts are derived from
the Nimbus-7 satellite CZCS. Data from the CZCS are received by the Scripps

.- . Institution of Oceanography Remote Sensing Facility whose facilities and
personnel have a unique capability to make the color data available on a near
real time basis to preserve its time-critical quality.

A unique data system, developed for use with the data obtained from the
Seasat satellite, provides a near real time access to the operational products
of the FNOC by commerical users. This Satellite Data Distribution System (SDDS)

m.~ "".. (3) provides both operational products and selected observations, including
observations from the Nimbus-7 Scanning Multichannel Microwave Radiometer
(SMlR).

Figure 2 illustrates the configuration of data sources involved in
-.. preparing the experimental fisheries charts. Data from each of these sources is

provided each day to a marine forecaster skilled in the preparation of marine
1Z" analysis and forecast products. From this aggregated set of environmental data,

the forecaster prepares a suite of fisheries-oriented charts for distribution to
fishing vessels by mean of daily radio-facsimile broadcasts supported by both

*U.S. Coast Guard Stations and radio station WWD operated by the Scripps
Institution of Oceanography. Figure 3 depicts the product distribution scheme
whereby the charts are made avilable to fishing vessels operating off the U.S.

* ,* West Coast from the Bering Sea southward to the Eastern Tropical Pacific.
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The experimental fisheries-aid charts depict atmospheric and oceanographic
properties of particular use by fishermen in selecting fishing areas and fishing
tactics. Figures 4, 5 and 6 illustrate three charts representative of the
several charts generated as part of the demonstration effort. The chart shown
in Figure 4 depicts sea surface temperatures (SST) as well as wave conditions
which are noted at the latitude/ longitude intersections, or at locations of
special interest. Arrows denote wave direction while the number indicates the
significant wave-height (H 1/3) in feet. Wave conditions are derived from the
FNOC Spectral Ocean Wave Model (SOWN). New SST analyses are made by computer
every twelve hours using reports from ships (engine-room injection or bucket
temperatures), satellites (infrared) and bathythermo graph systems.

The fishing success rate for many species of fish is highest within a
*relatively narrow range of ocean temperatures. For example, salmon are usually
* caught at temperatures below 500 F, with the greatest catches occurring between

490 and 510 F. Most albacore are caught at temperatures between 600 and 640 F,
while the largest percentage of tropical tuna species are caught in water
temperatures between 790 and 810 F. The experimental fisheries charts depict
these species-related SST bands. Figure 4 illustrates regions of preferred SST-
bands for both albacore (band indicated with A) and tropical tuna (bands

*indicated with T). The coastal SST values (shown as NUMBER in Figure 5) are
* derived from the SST analysis and are based on ship reports from vessels

operating in coastal waters.

The experimental charts depict key subsurface thermal characteristics.
This subsurface thermal information is generated operationally by FNOC utilizing
both bathythermograph soundings and climatology, and is selectively available to
commerical users through the SDDS. Figures 4 and 5 illustrate, through the use
of dashed lines, the depth of the mixed layer (MLD) which can be a significant
parameter for several fish species, including salmon and albacore. Research
conducted by Laurs has shown that albacore often tend to experience the MLD as a
thermal "ceiling" in their vertical feeding excursions. Knowledge of the MLD
can aid fisherman in selecting both gear and tactics while f ishing for those
fish species which exhibit thermal preferences.

On the experimental fisheries-aid charts, surface winds are not indicated
* by wind barbs as is the case on National Weather Service charts, but rather by

alphanumeric characters at selected latitude/ longitude intersections (see
Figures 4 and 5). Selected wind derivataives from basic wind field analyses are
of interest to fisherman because they are related to both significant weather

* and areas where nutrients tend to congregate. Wind derivatives shown on the
* experimental charts (see Figure 6) include the Intertropical Convergence Zone

(ITCZ) and lines of convergence. The ITCZ is the region where tradewinds from
the southern hemisphere converge with tradewinds from the northern hemisphere.

* Typically, a more-or-less continuous zone of wind convergence can be analyzed
* across the entire Pacific. However, parts of ITCZ are characterized by intense
* weather - heavy showers and/or thundershowers - while other parts exhibit weaker

wind convergence and produce little more than a few cumulus clouds. Since the
ITCZ normally lies within the tropical tuna-fishing area, it is shown on the
fisheries charts as illustrated in Figure 6. Areas where there are numerous
"C's" are the most active and are apt to have heavy showers and wind squalls.

4 The ITCZ is located through numerical wind analyses and satellite derived
visible and infrared photographs of clouds.

128



ui 0 .. 1, - . ..
J. m E _ _ __ _ I. ____ ___ __ I____ ___ ___ ___ ____ ___ ___ ___

I 6- toIJ I - 0 a/ *. ! *111I!--. . " . e . -5 I. -!

-l t I- " --. •
1.- 0 0)_ \1 V3 o -

0 il a, *I v, . < ,1

', 4 4w

- .- . .-.. i~ /* Lw_.I

M o CL

z*

,. ;;. -,'t ; ,r " E/ .;:--

LC0 '

* .,

.l --0

U)/ _ _ _ o- C

. .,. ,; .4+

4-J

2+ N a 4-+.4

tt

+ *
000

a- Ai

129*



w L w

0 -

0

L0 0 2 ~w

oo 0

a. E

it %, F % o

co

4 c

.5L

1 30



0
z

w

l 0- .( 0

w to _ _A Mh a
cq R .

a. 0 (

101

* '4-)

-v-v
Jo..

(4'j
L.

II

(JWA

(4-

* 4rwct

Ifn

00

9.0.

*. . . .- -131



Local areas and/or lines of wind convergence also represent regions of
squalls and wind shifts and possible areas of local nutrient (fish-food)
concentration. These areas/lines are also located by means of satellite
photographs and are depicted on the experimental charts as illustrated in Figure

5.

N"' %It is a well known fact that certain characteristics of the surface wind
field are favorable for concentrating nutrients at the ocean surface via
upwelling. Computation of wind "curl" and wind "shear" is utilized by the
marine forecaster to highlight regions where fish foods may be more
concentrated. These are typically regions where horizontal variability in wind
speed or wind curvature (directional change) is greatest. Areas of favorable
"curl" or "shear" are shown on the fisheries-aid charts as areas or lines of
convergence.

For completeness, and as a supplement to the operational National Weather
Service charts, the experimental charts show wave heights and directions as
characters at latitude/longitude intersections or at locations of special
interest to fishermen.

The tracking and near real time data processing capability afforded by the
Scripps Remote Sensing Facility and Visibility Laboratory, coupled with the
fisheries research of Laurs and Lasker, have provided the opportunity to test
the utility of satellite-derived ocean surface color observations in commerical
fishing operations. With a near real time capability to handle the Nimbus-7
CZCZ data, it is possible to provide perishable ocean color information to
fishermen by radio-facsimile in sufficient time to yield a product which has a
useful life of two to thref days. The work of Austin (4,5), Smith (6), Gordon
(7) and Laura has provided a basis by which these data can be interpreted and
correlated with water mass type and aggregation of fish species, especially
albacore.

Processing of the CZCS data for fisheries applications involves the use of
two CZCS channels, band 1 (443 nm) and band 3 (550 nm). Images showing
chlorophyll concentration and water clarity (diffuse attenuation coefficient)
can be generated by the use of processing techniques which ratio band I and band
3. Atmospheric scattering mechanisms contribute a significant proportion (up to
approximately 90 percent) of the signal as detected by the CZCS. To create a
useful set of images of the ocean surface, it is necessary to remove that
portion of the detected signal which is contributed by the atmosphere.
Processing algorithms used by the Scripps Visibility Laboratory (8) have proven
to be particularly successful in removing the atmospheric contributions. Figure
7 shows an ocean color image from band 1 data prior to atmospheric correction.
Figure 8 shows the same image following atmospheric correction, while Figure 9
illustrates a band 3 image, also after atmospheric correction. Finally, Figure
10 shows an image proportional to chlorophyll concentration generated from the

0 ratio of the band I and band 3 images.
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Fitgure 9. A Band 3 (550 nm) CZCS image after atmospheric corre.tion.
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It has been shown by Lasker, et al. (9) that satellite derived observations
of infrared sea surface temperature and ocean color (from the CZCS) can be used
to describe ocean processes in relation to the Northern Anchovy and the survival
of its early life stages. Figure 11 shows the distribution of anchory eggs
superimposed on the NOAA-G AVHRR thermal image of the Southern California Bight
taken April 6, 1980. The 140 C isotherm, plotted from the gray-scale

* - calibration of the AVHRR, has been drawn in as a heavy line. The feathery white
objects are clouds. The squares indicate the number of anchory eggs under one
square meter of sea surface. A companion image of ocean color taken April 8.
1980, is shown in Figure 12. In this image, the distribution of anchory eggs is
superimposed on the diffuse attention coefficient, a factor which is

*proportional to both water clarity and chlorophyll concentration. These image
data show that the fish have avoided freshly upwelled waters (cooler than 140 C)
and have been excluded from the more warm saline water from the south. It is
clear from these preliminary results that the distribution of anchory spawning
is related to ocean color boundary patterns and the distribution of chlorophyll.
These satel1lite-der ived measurements can uniquely be used to synoptically survey
the 85,000 square-mile anchory habitat and pin-point oceanographic areas where
spawning can be successful, thus providing a management tool which permits a
more accurate prediction of anchovy distribution and migration.

Ocean color has historically been a cue by which fishermen have identified
potentially productive fishing areas. Albacore fishermen operating in U.S. West
Coast waters key their fishing operations to the "blue" color of the ocean
water. Laurs, et al. (10,11) using both satel1lite-der ived sea surface
temperature and ocean color observations coupled with acoustic tracking data,
have begun to correlate the small-scale migration patterns of albacore tuna with
ocean color structure and water temperature. Figure 13 shows a CZCS image of
the U.S. West Coast in the region of Point Conception, processed to identify
color structure proportional to chlorophyll concentration. Computer generated
false color has been used to enhance the surface color structure. Warm, clear,
oceanic water is shown in blue, while the more cool, turbid coastal water is

*shown in the yellow to brown color ranges. Black areas are clouds. Points
marked A and B denote the area wherein acoustic tracking of several fish was
conducted. Figure 14 is an infrared image of the same region (different scale)
illustrating the surface thermal structure. The lighter regions are the cooler
inshore waters. Preliminary results which involved correlating both the color
and thermal images together with the acoustic tracking data, appear to indicate
that albacore aggregate on the warm side of ocean surface temperature fronts and
remain in water that has higher water clarity than the adjacent waters. While
additional analysis is required to explain the role of water clarity and
temperature in the mechanisms underlying the preferential aggregation of
albacore in certain water masses, it is clear that these satellite derived
observations of ocean color and IR temperatures can aid scientific research
directed towards fisheries forecasting of the distribution, migration, and
availability of the fish stock.

While further investigations are necessary to attempt to correlate albacore
fish catch with water color structure, there is sufficient evidence to suggest
that an ocean color structure product would be a useful tool to commercial
fishermen to aid in the identification of ocean areas with the potential of

'aggregating quantities of albacore. Based on this knowledge, a color chart is
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produced as part of the Fisheries Demonstration Program and transmitted to
fishermen by radio-facsimile. The radio-facsimile chart, shown in Figure 15, is
derived from a computer-generated. false color image processed to highlight
ocean regions of high chlorophyll concentrations and water clarity. Based on
the false color image, as shown in Figure 16, a chart is drawn to identify the
boundaries separating key water masses, based on chlorophyll concentration.
Each water mass is identified in terms of its relative color, vith the most -

green water labeled as "number I water" and the most blue water labeled as
"1number 4 water". Water masses of intermediate colors are noted with 2 and 3
labels.

To make maximum use of the environmental information available through both
the National Weather Service and the experimental fisheries program. fishermen
must correlate key meteorological and oceanographic features in order to
identify ocean regions most likely to support selected fish species and which
permit fishing gear to be deployed. Figure 17 has been developed as a training
aid to illustrate the correlation process that will tend to highlight favorable
albacore fishing areas. Figure 17 is a composite chart depicting those
oceanographic and meteorological parameters shown on NWS and fisheries-aids
facsimile charts. Wind and sea conditions denoted above the hash-mark line tend
to exceed those limits where troll gear can be effectively deployed. while below
this line wind and wave conditions are reasonable. Sea surface temperature
conditions are favorable for albacore within the "A" bands and the mixed layer
depth levels in the range of 50 to 150 feet are preferred for troll fishing
methods. Ocean color boundaries separating warm, clear oceanic water from the
colder. more turbid coastal water are highly preferred by albacore and are shown
in Figure 17 as boundaries between number 2 water and number 4 water.
Significant. but less preferred boundaries exist between number 2 water and
number 4 water. Giving consideration to each of these parameters. including the
preferred color boundaries, it is apparent from the composite training-aid chart
that key ocean areas for albacore exist in the regions of 1220 and 1230 west
longitude and 320 to 340 north latitude.

While this correlation of environmental parameters may not conclusively-
identify productive fishing areas since non-environmental factors also effect
the feeding and migration patterns of fish, it will aid the commerical fishermen
in separating those fishing areas with a higher probability of supporting fish
concentrations from those with lower probabilities. And, maybe more
importantly, the fishermen will be able to identify areas which are most likely
not to support fish concentrations, thus allowing the fishermen to avoid
selected areas and make more efficient their search operations.

The Experimental Fisheries Program has begun to illustrate to the
commerical fishing industry the utility and economic viability of satellite
observations of the ocean surface in their fishing operations. Assimilation of
this NASA-developed satellite technology by the fishing community will be slow,
but with continued demonstrations under balanced partnership arrangements
between government and industry, the technology will come to play a key role in

* making the U.S. fishing industry more efficient, safe, cost effective and
competitive on the every widening world market.
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Digitaly Contiroed Sonars

. j George R. Hansen
Information Systems Division
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, California 91109

; 0 1 INTRODUCTION

Sonars are usually designed and constructed as 'stand-alone"M instruments. That
" is, all elements or subsystems of the sonar are provided: power conditioning,

displays, intercommunications, control, receiver, transmitter, and transducer. The
sonars which are a part of the Advanced Ocean Test Development Platform (AOTDP)
represent a departure from this manner of implementation and are configured more
like an instrumentation system. Only the transducer, transmitter, and receiver
which are unique to a particular sonar function; Up, Down, Side Scan, exist as
separable subsystems. The remaining functions are reserved to the AOTDP and serve
all sonars and other instrumentation in a shared manner.

The organization and functions of the common AOTDP elements wi--l-be described
and then the interface with the sonars discussed. The techniques for software
control of the sonar parameters w4l-ibe explained followed by the details of the

~ realization of the sonar functions and some discussion of the performance of the
side scan sonars.

II AOTOP

The Advanced Ocean Test Development Platform is a deep ocean instrument system
patterned very much in performance goals after the Scripps Institution of Oceanog-
raphy DEEPTOW. The AOTDP consists of a submersible instrumented FISH which is
connected electrically and mechanically through a tow cable with a surface towing
ship. At the other electrical terminus of the cable is the AOTDP control van which
houses the displays and controls for the FISH instruments as well as position
determing (LORAN) and VHF and intercom communication equipments. Figure 1 is a
block pictorial representation of the AOTDP system.

.- Both the FISH and VAN portions of the AOTDP are distributed processor systems.
"" Figure 2 is a functional block diagram of the FISH and Figure 3 is a similar diagram

of the VAN system. The FISH utilizes microprocessors while the VAN system is based
on minicomputers. Three types of subsytems are common to both FISH and VAN. These
are power, data, and communication. The data subsystem performs the functions of
command, control, and data gathering.

The command and control computer (front end processor) in the VAN has the
capability to program the microprocessors in the FISH, to command the FISH state, to
accept and store data from the FISH, and to recall previously stored data. Real
time processing of data from the FISH or recalled from the archive store is possible
by the side scan processor. Real time processing can improve the guiding of thedata taking process. The data can be displayed; on the comuter console, as a
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printed record, or graphically on a hard copy grey scale recorder or color video
-.. ,. CRT.

The AOTDP command, control, and telemetry is almost entirely digital. That is,

! n all information interfaces between the communication, computing, and
.4 instruments(sonars) is digital. The exceptions are engineering telemetry

5. measurements which necessarily are analog at the measuring point but these data too
are converted to digital data in the FISH data system.

The cable connecting the VAN and FISH is a conventional deep ocean cable with a
single coaxial conductor sheathed with two contralaid multistrand strength members.
The coaxial cable is used to convey 60 Hz power to the FISH as well as a digital
command link. The command link rate is 1000 bits/s which psk modulates a 16 kHz
carrier. The up telemetry link from FISH to VAN operates in full duplex with the
command link and is at 250,000 bits/s Manchester coded. That is, the carrier and
bit rate are at the same frequency with the carrier phase at 0 or 180 degrees
depending on the data bit.

*. The power subsystem in the VAN which furnishes 60 Hz energy to the FISH cable is
, lei isolated from the command transmitter and telemetry receiver by a simple low pass

filter. The transmitter and receiver in turn are connected to the cable through a
multiple pole high pass filter.

The distributed system in the FISH is a bus connected array of microprocessors
' .-' (KCA 1802 CMUS) with one high level processor controlling the bus and the remaining
. five each associated with a particular sonar. This organization and the interface

between the sonar and the microprocessed are outgrowths of a Unified Data System
* -. research program at JPL which led to equipment realizations in the FISH and the

•Q Lalilleo spacecraft.

Each sonar is connected to a User Module (cf Figure 4) which relays parameter
- ' changes to the sonar and collects data from it. The User Module is a single board

micropressor with 2K bytes of RAM. The User Module is connected to the sonar
through an 8 bit parallel data transfer and up to 32 discrete signal lines. The

1, parameters which are destined for a particular sonar are sent on the FISH bus to the
proper User Module and stored in the parameter table part of the RAM. These
parameters are then transferred into appropriate registers which form part of the
sonar by the discrete signal lines. The actual timing of these transfers depends
upon the nature of the parameter. Frequency change parameters are transferred to
the sonar immediately upon receipt in the User Module and new Time Varying Gain
values from the TVG table are sent over each 5 msec at the real time interrupt
rate. The echoes received by the sonars during the listening time are digitized in
the sonar receiver and sent to the User Module. The echo amplitudes are sampled at
a rate determined by a sonar command (nominally once each millisec) and transferred
over the parallel data transfer to a double buffer in the User Module RAM.

SEach of the lower level microprocessors is connected through a bus adaptor to
the FISH bus. This is a serial 4 wire bus which controls and enables data and
command transfers to and from the high level processor by each of the lower level
units or between the lower level units. The bus lines operate at a I mHz clock rate
and transfer data and commands at 80,000 bytes/s (640,000 bits/s) in a serial mode.
Two lines of the bus are word and bit synch lines and the other two are for

* '" addressing and data. Owing to the nature of the organization and connections, no
- lower level unit can "volunteer" information to the bus or otherwise interfere with

valid transfers.
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"; III SONAR COMMANDING

3 iThe sonar transmitter and receiver parameters are determined by commands sent to
, . the FISH from the VAN command processor. The selection of parameters is done by the

operator by means of a cathode ray tube terminal keyboard. The operator makes
selections from a hierarchy of menus. Four levels of menus are specifically
utilized for commanding the state of the sonars. Examples of these are shown in
Figures 5a, 5b, 5c, and 5d. The highest level menu (Fig 5a) shows the sonar
software option as a choice. Selection of this evokes the next level menu shown in
Fig. 5b, which asks which sonar is to be changed. At the third level menu depicted
in Fig. 5c c specific parameters of the sonars are displayed for selection. Option
selections from this menu cause a request for a specific value or evoke a forth

* 7. level menu. Values are requested for parameters needing only a single byte of 8-
bits to change the parameter but where several bytes would need to be changed a menu
is provided. An example of the latter is frequency where a three byte command is
needed. The frequency option menu is shown in Fig. 5d. The values for the
frequencies range from above to below the nominal and depend upon which sonar was
selected at the second level.

As each parameter is selected it is transmitted over the command channel to the
Q the higher level microprocessor in the FISH and stored in a table dedicated to

parameters for the sonar being changed. An auxilary routine provides a display of
the parameters stored in the FISH. When the operator is satisfied with the changes
that have been sent an initiate parameter option from the sonar menu causes this
table to be sent to the sonar User Module. The parameter changes are then made to
the sonar receiver and transmitter under control of the User Module program prior to
the next transmitted pulse.

During the initial loading of the FISH processors the command processor loads a
set of nominal parameters into the tables in the higher level FISH processor. These
parameters set all sonars to the nominal frequency for each and set the transmitted
power level to be zero. As a further protection the individual User Modules must be
started by the operator. The intent of this procedure is to avoid incompatible

,. transmitted power levels and pulse lengths which might damage the sonar power
amplifiers.

- The time varying gain (TVG) curve for each sonar is developed by a separate set
- of menus. These allow choices from a repertoire of functional curves and also

provide for the creation and editing of TVG curves for testing purposes and actual
use.

IV SONAR RECEIVERS

All of the sonar receivers use the direct conversion technique wherein the
* received echoes are mixed with the carrier frequency of the transmitted pulse. This

has the effect of creating an intermediate frequency centered at zero hertz. All
post mixing amplification and signal handling is therefore at low audio frequencies.
A common mechanization for all sonar receivers after mixing is a result of this
design approach which also facilitates the logistics of spares and servicing. The

.-:- functional block diagram of the receivers is shown in Figure 6.

Pre-mixing amplification takes place in two stage gain controlled amplifiers
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tuned to the particular sonar frequency. Two, stages are employed; more to achieve
the desired time varying gain attenuation (TVG) rather than the amplification
possible. The TVG attenuation is developed by a lossy variable resistor across a
third winding on each of the tuned coupling transformers in the pre-amplifiers. The
resistor used is the source-gain path of junction FET's. More than 50 db of
attenuation is available through control of the DC voltage to the gates of the FET's
with this circuitry.

The TVG function in these sonars is a stepped curve with a new value of
attenuation available every 5 msec during listening. Every 5 msec an 8-bit value is
transferred from the User Module to a register in the sonar. This value is
converted to a negative DC voltage which is applied directly to the FET gates. The
FET's are not identical, therefore the TVG attenuation versus the 8-bit value must
be calibrated for each sonar.

The direct conversion technique requires two mixers with the local oscillators
for each in quadrature in order to recover the true amplitude of the returning
echoes. Two identical post mixing amplifiers are employed, mechanized with IC
operational amplifiers. Overall gain control of each channnel of amplifiers is
obtained by using the ladder network of a digital to analog converter (DAC) to
control the feedback current around one stage. Again, an 8-bit value stored in a
register can control this current over a 1 to 256 range providing a gain adjustment
totalling 48 db in each channel. Only one register is provided to operate the DAC

- in each channel to avoid inadvertent gain unbalance.

The sonar signals in each channel are filtered with a three pole low pass filter
and applied to sample and hold circuitry. The two channel signals are sampled at
regular intervals by a strobe derived from a programmable divider with a 40 kHz
input. Normally 5 samples are taken between each 5 msec real time interrupt, but
the divider can be programmed for other integral numbers of samples in this
interval. The divider ratio is held in a User Module loaded register in the sonar
and rejammed into the divider at each underfl ow.

The sampled analog values are digitized in a two-quadrant analog to digital
converter and the resulting 8-bit value placed in a holding register. The byte is
transferred to the User Module under microprocessor control and the interval between

-'K..- samples of the two channels is as small as the successive digitization and transferwill al low (about 40-50 microsec).

V S(NAR TRANSMITTERS

As in the receivers, the sondr transmitters share a common design for logistic
reasons. Linear Class B ampIi fers are employed to preserve the modulation envelope
for tne sonar pulse to the transducer. These amplifiers are conventional

0. transformer coupled. Push-pull parallel output stages are also transformer coupled
to impedance networks to match the transducer for maximum power transfer. The

* . energy for each transmitted pulse from the sonars is stored in capacitors which are
charyed during the interpulse period. The capacitors are disconnected from the
charging circuitry to the power supply just prior to the sonar pulse to avoid large

. surge loads being placed on the power supply. All sonars are pulsed simultaneously
to dvoid interference during listening. Figure 7 is a block diagram of the sonar E
trdnsmitters and pulse forming logic.
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The modulated carrier pulse for each sonar is developed with pulse forming -*1
circuitry located on the same board as the sonar receiver. No gain control is
provided for the power amplifiers as the amplitude of the input pulse supplied
determines the output power.

The carrier frequency for each sonar is derived from a common 1 mHz reference
frequency available from the FISH data system. Phase locked loop frequency
synthesizers with the output frequency an algebraic fraction of the reference are
used for carrier generation. The reference and the oscillator in the PLL are
divided by different integers before being compared in the phase detector of the
PLL. The PLL oscillator frequency then becomes a rational fraction of the reference

.* frequency. The actual frequency developed in each sonar is eight times the carrier
frequency. The carrier frequency range that is developed by this technique may be
less than 10 to more than 125 kHz.

The integer division ratios for a particular frequency are furnished by the User
Module to the sonar as three 8-bit values which are stored in regisLers in each
sonar. The values are calculated by the surface command processor and sent as
immediate commands whenever a new frequency is selected from the menu for a sonar.

The eight times sonar frequency is doubled digitally and used to clock a shift
register which generates the carrier "sine wave." This waveform is a sixteen step
approximation to a full cycle of a sine wave and is generated by a weighted resistor
array driven from data in the shift register. Currents are added to or taken from a
junction in accordance with the value of the resistor and data state of the register

*, - and a wave results as shown in Figure 8.

In addition to the synthesized carrier and frequency being generated by digital
means, the modulation envelope and pulse characteristics are also digitally
realized. Five waveforms and a phase shift keyed code are available for modulating
the sonar carrier pulse. The waveforms are half cycle sine, full cycle cosine, sine
X/X, rectangular pulse with linear rise and fall, and rectangular pulse with
exponential rise and fall. Figure 9 is six oscilliscope photographs of the wave
forms. The brighter traces are due to the stepwise nature of the individual carrier
cycles. The carrier is smoothed by the tuned nature of the power amplifier and the
higher frequencies do not affect the output waveform. The phase code used is a
seven bit barker code. The ordinates for a stepwise approximation for each of the
various waveforms are stored in a different portion of a 256 X 8 ROM (read only
memory).

Pulse selc Lion is obtained by indicating the starting address of the shape and
. the number of ordinates (successive addresses) required. These two parameters are
.- determined by the command processor when a pulse is selected from that menu and the

values stored in the sonar. The total length of the pulse is also a selectable
parameter and is determined by a programmable divider which times the rate at which
addresses of the RUM are incremented. In actuality only the ordinates for half the -

pulse envelopes are stored as all pulses developed are symmetric. The ROM addresses
are therefore counted up for the first half of the pulse and back down for the
second half so that the address coun~er is returned to the initial point each time a

'-{ pulse is developed. Another parameter useful for determining the duration of the
"' flat top of rectangular pulses is also available and determines the interval of time

that should elapse between the counting up and down of the ROM address counter.
This parameter is also selectable from a sonar command menu.
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LEFT/RIGHT SHIFT LEFT/RIGHT SHIFT

REGISTER REGISTER

150K 51KT 36 10K 10K 36K 1K 150K

SINE OUT

111100 00111111

11110000 0 11111110000

0000011111100000

0000001111000000

00000001 10000000
00000000

Figure 8. Sine wave generator.
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The ROM ordinates so selected by the address counter control a digital to analog
converter (DAC). The "sinewave" carrier is provided to the DAC as a reference which

*is then multiplied by the ordinate value and thereby amplitude modulated. The
modulated pulse that results is in turn used as the reference to a second DAC which
uniformly multiplies the pulse by another parameter. Since the overall amplitude of
the pulse determines the power output of the transducer driven by the power
amplifier, this parameter determines the output power.

VI PERFORMANCE AND STATUS

The AOTDP system has undergone three sets of sea trials. These have been
* conducted in the channel waters between Long Beach, CA and Catalina Island. The

*sonar subsystems described are employed on five sonars: port side looking, starboard
side looking, down or altitude, up or depth, and the transponder interrogator.
Echoes from the side scan sonars were received at ranges exceeding 400 meters when
towed at a height of 75 meters midway in the water column.

Most of the development efforts have been focused on the side sonars, but every
improvement tested there has been incorporated easily into the others owing to the
common design. A change to the side sonars not yet included in the up, down, or
transponder is a change in power amplifier design from a linear to a switching
amplifier for increased power output (from 280 to 550 watts rms). This change will
necessitate using pulse width rather than amplitude modulation to realize the

* different "waveshapes" and control maximum power out. This change has been designed
but not implemented.

UIn May of 1982 the AOTDP system was transferred on loan to the Woods Hole
Oceanographic Institution for possible inclusion into the ARGO/JASON program.

The work described in this report was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under contract NAS 7-100 with the
National Aeronautics and Space Administration.
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Application of Computer Image Procsing
to Unor Surveys.

Peter R. Paluzzi

McQuest Marine Research & Development Co. Ltd.( 489 Enfield Road
Burlington, Ontario, Canada

L7T 2X5

ABSTRACT

- Computer image processing has often come to be equated with automated pattern
analysis, particularly within the context of spacecraft remote-sensing. Automated

.r pattern analysis in the form of multispectral classification has been widely used
for crop and lithologic mapping from Landsat images. Conversely, bottom photographs
and side-scan sonar images collected during underwater surveys have rarely been

C subjected to automated pattern analysis. Among the reasons for this are limitations
of the imaging techniques and complexity in terms of scene and pattern descriptions.
It is therefore worthwhile to consider alternatives to pattern analysis for helping
interpreters to work with images from underwater surveys. Computer dc notch

0 filtering and geometric rectification by resampling are two key image processing
techniques which have proved to be successful in achieving this goal. In addition,

.. Ju since image interpreters often compare bottom photographs and side-scan sonar
records to other map based data, namely depth soundings or bathymetry, it is

"' advantageous to also display these data as an image. Finally, while the alternative
computer image processing techniques are, by themselves, powerful tools for
improving image display, they also show promise for alleviating some of the problems
facing automated pattern analysis as applied to underwater survey images. -

- I. INTRODUCTION

In the context of spacecraft remote sensing, computer image processing has
become synonomous with automated pattern analysis. Pattern analysis in the form of
multispectral classification has been applied to Landsat images for crop
identification and lithologic mapping. However, computer pattern analysis has not
been used to the same extent for images returned by underwater surveys. Reasons for
this arise from limitations of the imaging techniques and complexity in terms of the

. scene content and pattern descriptions. To make matters worse, the seafloor or
lakebeds surveyed are areas of exploration; that is, their surfaces can be as
unfamiliar to interpreters as was the backside of the moon before the age of space

- flight. Situations may even occur where an interpreter must identify patterns made
by objects no one has seen before let alone described.

.%

* While the science and art of pattern analysis advances towards the goal of
someday overcoming these problems, other approaches are available to augment the
power of the image interpreter. One alternative is to use different computer image
processing techniques to improve the way the images are displayed. Foremost among
these techniques are image enhancement and geometric rectification. Both have been
routinely used in terrestrial and planetary remote-sensing projects. The value of
this aspect of computer image processing has been demonstrated by applying these
techniques to two types of underwater images: bottom photographs and side-scan
sonar. Since image interpretation often requires comparisons with other data, such

173

" *' " . .-.- ... . \' . "*"X' -'. - .



as submarine topography or bathymetry, it is also useful to display these data as an 
image too. Digital tP.rrain models of the seafloor have been created from 
point-value data and displayed as a shaded relief image. This bathymetric imaging 
technique portrays the bottom morphology in a way that is similar to images from 
underwater surveys. Examples provided in this report graphically show how the 
computer processing can overcome drawbacks of the imaging systems a~u maKe the task 
of image interpretation easier and more productive. 

II. BOTTOM PHOTOGR4PHS 

The predominant sort of image returned from underwater surveys is the 
photograph. Cameras which are, in principle, much like those used by casual 
photographers have been used in underwater surveys for years (Heezen and Hollister, 
1971). Because of the optical properties of watP-r, color film is only occasionally 
used in these cameras. Water filters out almost all colors except blue-green. 
Hence underwater photographs are essentially monochromatic except for pictures taken 
at ranges closer than a meter or two. Furthermore, as the distance from the camera 
to the object increases, water increasingly scatters light in all directions and 
reduces image contrast. Underwater photographs are literally useless for surveys 
performed at ranges greater than 20 meters or so depending on water clarity. 

Normally the cameras used in surveys hang from a long line held by a ship. 
As the ship moves forward, the camera takes pictures of the bottom in plan-view • 
Unfortunately, there is little control over the camera pointing angle and very often 
the images possess perspective distortion. This distortion presents problems to the 
interpreter when the task at hand requires reliable measurements-of sizes and shapes 
from the image • 

. ~ong the most severe of problems encountered in underwater photography is 
that of illumination gradients. Essentially no sunlight reaches water depths below 
30 meters. When photographic surveys are conducted below this point a light must be' 
carried with the camera. It is hardly practical to attempt to duplicate the 
relatively even illumination of the sun underwater; instead, a single small strobe 
light is used with the bottom cameras. Pictures taken with this type of lighting 
may have one part of the scene brighter than elsewhere. In cases where the light 
source is in front or in back of the camera, the resulting illumination gradient 
creates a dark border surrounding the scene; this is called vignetting (figure la). 

In order to suppress such gradients an image processing technique known as 
"de notch" or "high-pass" filtering has been used (Paluzzi and others, 1976). The 
operation of the filter is simply to blur the image with a low-pass convolutional 
filter and then to subtract the blurred image from the original (Castleman, 1979). 
After applying a brightness correction, the resulting image can be contrast enhanced 
to shmr maximum detail throughout the scene without saturating the highlighted or 
shaded areas. Figure lb shows the image in figure la after being subjected to this 
processing. 

One drawback to the convolutional de notch filter is a side effect known as 
r ing (Castleman, 1979). The resulting visual effect of ringing is that light or 
dark halos surround scene objects having greatly different gray levels from that of 
the background. Figure 2a is a bottom photograph much like that of figure la with 
the exception that the camera that took the photograph had a lens with a wider 
viewing angle. Consequently, the greater coverage allows the shadows created by a 
protective cage surrounding the strobe light to appear prominently. When the same 
de notch filter is used on the image, ringing occurs owing to the radial and annular 
shadows (Paluzzi and others, 1976). 
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' Figure 1. Bottom photographs showing the removal of illumination

gradients. Figure la shows a bottom photograph that has
been digitized and displayed with no dc notch filtering.i - Objects in both the light and dark portions of the dc

. . notch filtered image (figure ib) are portrayed with equal
-, clarity because the subsequent contrast enhancement oper-
• i ates only on the features and not the illumination

* gradient (after Paluzzi and others, 1976).
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To overcome this problem, the image was geometrically resectioned into a
polar coordinate representation centered on the strobe light (see figure 2b). The
radial shadows thus became horizontal lines and the annular rings were vertical
lines (Paluzzi and others, 1976). One dimensional horizontal and vertical dc notch
filters were then used to effectively suppress the offending shadows (figure 2c).
This image was then retransformed to its original configuration (figure 2d). Survey
images processed in this way can be combined into a mosaic that is less confusing to
the eye because the striking shadows are gone.

III. SIDE-SCAN SONAR

Side-scan sonar has been used as a geological survey tool since the early to
middle 1950's (Chesterman and others, 1958). It is essentially the same in
operation as the familiar profiler or chart recording fathometer except for the
transducer deployment and associated eletronics. Side-scan sonar paints an "aerial
photograph like" image of the bottom on the chart paper record by scanning a narrow
line footprint with an acoustic pulse. The pulse is projected to the port and
starboard sides of towfish mounted transducers in a fan shaped beam. The plane of
this beam is perpendicular to the trackline as shown in figure 3. Rather than
measuring the immediate depth below the towfish, side-scan sonar registers the
intensity of echoes cast from objects lying on the bottom to either side. The
variations in echo intensity arise from the orientation of the bottom, its acoustic
reflectivity and its surface roughness. The resulting shading effect creates an

image which depicts the morphology of the area. Although side-scan sonar is
immensely important for revealing underwater terrain at scales which could never be
seen by man, its presentation is marred by distortions inherent in the imaging

technique.

Descriptions of these distortions abound in the marine literature (Belderson
and others, 1972; Berkson and Clay, 1973; Clay and Medwin, 1977; Cole, 1968; Urick,
1975). The most notable forms are slant-range, ship speed and trackline distortion.
Slant-range distortion is introduced by the imaging geometry. The effect is to
squeeze the image away from the center (nadir). Thus, a long linear object lying on
the bottom (for example a straight pipeline) which crosses the image diagonally will
appear curved near the image nadir (Belderson and others, 1972). Since a side-scan
sonar image is built up a line at a time by the forward motion of the towship, any
miscoupling of the ship speed with the chart paper advance will expand or compress
the record along the trackline. Finally, despite the best intentions of marine
scientits and ships captains, the towship very rarely follows a path that is an
absolutely straight line. Most side-scan chart recorders were designed with the
assumption that a survey will always adhere to straight line traverses. If the
heading changes while underway, for whatever reason, the recorder will not register
the change and the image will be distorted.

In the end, the cumulative effect of these distortions is to warp the image
of the bottom, in some cases much like a fun house mirror. Just as the reflections
of familiar people and things seem strange and unrecognizable when viewed through
these mirrors, so seem the bedforms and landmarks in side-scan sonar images as
viewed by the interpreters. Several methods have been devised to alleviate this
problem. They range from mechanically changing the way the images are set down upon
the chart paper to complex flow cameras with anamorphic lenses (Berkson and Clay,
1973 and Belderson and others, 1972). A computer image processing technique known
'a geometric rectification by re-sampling has been effective in removing similar --

distortions in remote-sensing images (Castleman, 1979).
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Paluzzi and others {1981) have successfully used this technique to correct 
side-scan sonar images given certain assumptions about the imaging geometry and 
topography. Their work involved side-scan sonar images from the British Institute 
of Oceanographic Sciences long-range GLORIA system. Sonar images covering 30 km to 
the port and starboard were corrected for geometric distortions and shading 
gradients. Once corrected, the images were digitally mosaicked and transformed to a 
Mercator Projection. Figure 4a shows the unprocessed images and figure 5 is the 
final mosaic. The advantage of the computer processing in this case is that the 
images are presented in terms of a cartographic base and can be directly and 
conveniently compared to other map based data. 

BATHYMETRIC IMAGING 

Comparisons of bottom photographs and side-scan sonar images to other data 
are important aspects of interpreting images collected during underwater surveys. 
Although the associated data can be almost any physical or environmental parameter, 
depth or bathymetric data are most frequently used. This is because bathymetric 
data show the topography of the survey area which greatly influences bottom 
currents, slope stability, sediment transport and physical chemistry of the survey 
site. These paramters in turn affect the bedforms, sedimentology and benthic life 
as they appear in bottom photographs and side-scan sonar images. The comparisons 
are usually made by the interpreter whil~ he or she examines -tmages and contour 
charts of the area. The charts are made by plotting iso-depth contours amongst 
depth data points known as soundings. Such charts show the quantitative depth data 
as well as a representation of terrain. A shortcoming of this type or terrain 
display is that it does not have the visual impact of portraying the bottom as 
continuous surface with relief visible by virtue of shadows and shading. 

Paluzzi and Malin (1981) used bathymetric data collected during a NOAA survey 
of the continental margin off California to create a shaded relief image of the 
seafloor. To do this they placed the sounding data into an image array such that 
each point corresponded to a single picture element or pixel. The gray value of 
this pixel was a function of the depth. Since the data were not collected in a 
regular grid their spacing was uneven and large holidays existed between them (see 
figure 6). A digital terrain model based on a rectilinear latitude-longitude grid 
vas created from the data using an interpolation technique. The result was a 
picture having gray scale registered depths rather than scene brightness (see figure 
7). A shaded relief image was derived from the digital terrain model image by 
co~:,puting the surface slope in the direction of the source of illumination (figure 
Ba). Are~s vith larger gradients in the direction of the light source are given 
lighter gray tones and areas with shallov slopes appear mid gray. Those parts of 
the terrair. that d away from the light source are represented as black. 

The key advantage of this technique is that it immediately conveys the visual 
appearance of the terrain to the viever. This means that the interpreter is 
relieved of the burden of mentally transforming the contour representations of the 
topography into a 3- dim.::nsional surface·. The continents appear this way in 
conventional remote-sensing images since a camera or scanner can directly see 
shading effect of the sunlight falling on the landscape. Submarine topography 
cannot be seen at small scales because the water of the ocean or lake covers it like 
an opaque bla:1ket. The bathymetric imaging display technique is consequently a way 
to portray the undervater terrain as if the water veren't there at all. 
F'urthermore, because the shading is sensitive to subtle changes in gradient, it can 
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The data have been placed into an image array. Each data
point has a gray level representation of the depth.
Darker tones mean shallow depths, lighter tones mean
greater depths (after Paluzzi and Malin, 1981).
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be possible to see slope changes that may go unnoticed 'n a contour map (figures 8a
* and 8b). In short, the use of shaded relief images to display bathymetric data is

an elegant conceptual link between the data and the mind's eye.

u One disadvantage to bathymetric imaging is that the display does not show
quantitative data as does the contour map. The shading shows the shape of the
terrain but does not directly yield elevations or depths. Yet, it is still possible

- to overlay the shaded relief image with contours generated from the gridded digital
terrain model. If contours superposed upon the shaded relief image prove to be too
confusing, the gray tones can be digitally painted different colors depending upon

-- the depths. Also, because the shaded relief image was created from a digital
terrain model, the data can be further processed to provide other displays.

- V. PROSPECTS AND PROBLEMS FOR PATTERN ANALYSIS

Since bottom photographs are mostly monochromatic, the possibility of pattern
analysis by multispectral classification is nil. On the other hand, spatial

S.- patterns appear repeatedly in these images. These patterns are mostly that of
- "isolated objects, sedimentary bedforms, rock outcrops, bioturbation markings,

benthic animals and miscellaneous articles lost or discarded by man. If one were to
use automated pattern analysis to identify these features in bottom photographs, one
should use algorithms that account for any distortion in the image as well as for
changing shadows, illumination gradients and degraded contrast. Rather than

considering all these factors in the pattern analysis scheme, it is better to
correct the image shortcomings with a preprocessing step using the previously
mentioned techniques.

Side-scan sonar images frequently contain patches or areas of nearly uniform
gray tone. These areas are often irregular and are a result of differences in
acoustic scattering of some material with the surrounding terrain (Clay and Medwin,
1977). Some images show long linear objects or lineaments which may be, in some
cases, exposed pipelines or cables. Like bottom photographs, side-scan sonar images
contain point like patterns which correspond to isolated targets such as rocks or

man-made articles. Depending upon the local sedimentary environment, bedforms can
be visible in side-scan sonar images. Some of the bedforms are large such as
mega-dunes and current ripples (Belderson and others, 1971). Bedforms too small to
be resolved by most side-scan sonars (typically <lm) can act as a diffuse scatterers

and appear as the contrasting irregular patches previously described. The strength
of this scattering depends upon the micro relief of the bedform as compared to the
wavelength of the acoustic pulse (Urick, Clay and Medwin). Like the smaller
bedforms, the workings of benthic animals are also small and scatter acoustic
energy; yet, they may not be resolved in the side-scan sonar image. Areas of heavy
biologic activity can also appear as contrasting irregular patches in the image.

Since the strength of the echoes recorded in side-scan sonar images has a
wavelength dependence, at least with repsect to surface roughness, it may be

possible to employ multispectral pattern analysis to identify certain bottom types.
S. Also, because some objects have characteristic spatial patterns associated with

them, they may be identifiable using spatial pattern analysis techniques. However,

some traits of the side-scan sonar imaging process itself present potential problems
for using automated pattern analysis. Distortions introduced by the slant-range

*i geometry and the motions of the towfish create ambiguities for spatially identifying
• -known objects and features. Since many items of interest (bedforms, ships, etc.)

-. are visible in the images by virtue of tie shadows they cast, any change in tow

* "" depth or look direction may change their ;perince. This is particulariy true for
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the irregular patches which have sonar signatures related to their scattering
fields. The literature for radar imaging contains many references to the fact that
rough surface scattering is not only affected by wavelength but also by the grazing
and azimuth angles (Beckmann and Spizziccino, 1963; Shaber and others, 1976; Peake
and Oliver). Urick (1975) and Clay and Medwin (1977) have similarly described
acoustic scattering to study this problem in the sonar context.

Uncertainties in the patterns recorded in the images also arise from
-inhomogeneities and stratification in the water column (Cole, 1968). The spatial

aspect of a pattern can be altered if the speed of sound changes in the water column
since the side-scan sonar echoes are recorded versus their time of flight. For

* * short ranges, 100 m or less, this may not be a significant problem; however, ray
* bending and changes in acoustic transmission loss could affect the pattern's

appearance in the image. Furthermore, the rapid loss of signal intensity with
increasing range creates difficulties for unambiguously identifying patterns in the
far range portions of the image.

Again, preprocessing of the side-scan sonar images can alleviate some of
these problems associated with recognizing important patterns. Yet, the
uncertainties introduced by the interaction of sound with targets require careful
consideration for reliable automated pattern analysis. Most interpreters of

side-scan sonar images agree that it is very tricky to reliably identify many scene
features visually. Indeed, the same terrain will look differently when surveyed

- * with changes in look direction or towdepth. In some cases, a highly trained
-'[<. interpreter who is familiar with the survey area is required to properly identify "[

features in a side-scan sonar image. In the final analysis, the pattern analysis
* algorithm may have to be as equally as capable as this interpreter to perform

equally as well.

VI. SUMMARY

Although images returned from underwater surveys may not always be suitable

for advanced image processing techniques such as automated pattern analysis, the
quality of interpretation using these images can still be improved using other image
processing techniques. DC notch convolutional filtering can suppress illumination
gradients in bottom photographs and side-scan sonar images. In some cases, the
convolutional filter can be combined with other methods such as rectangular to polar
coordina-e transformations to expand the overall power and usefulness. Geometric

" distortion in bottom photographs and side-scan sonar images can be corrected by
digital resampling if the nature of the distortions is sufficiently understood.
When the images are geometrically corrected, in particular side-scan sonar images,
it is then possible to do direct comparisons to other map based data such as
bathymetry. The bathymetric data can also be recast as an image to aid this type of
'omparison arid display topographic details which may go unnoticed on the contour
charts.

* .. Pattern analysis in the form of multispectral classification as applied to

underwater images holds greater promise for success when used with side-scan sonar
images rather than bottom photographs. However, automated spatial pattern

recognition may be equally suitable for both image types. In any event, setbacks
f, r automated pattern analysis arising from image degradation or geometric warping
can be minimized by employing the image processing techniques cited in this report.
In fact, the image processing techniques by themselves are powerful too'S for
improving the effectiveness of those who must interpret images from und rwiter
S. ;rveys.
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LO°The Identification and Inversion of Acoustic Mukipath Data
at Long Range in the Ocean

Michael G. Brown

- Institute of Geophysics & Planetary Physics
Scripps Institution of Oceanography

University of California, San Diego
La Jolla, California 92093

CV "-Due to the presence of the ocean sound channel, in general many ray
- Cq paths (multipaths) connect a given acoustic source-receiver pair in the

ocean. The number and structure of the multipaths depend on the details of
.- the sound channel and the positions of the source and receiver. As each

multipath samples the ocean differently each contains unique information about
the sound speed structure of the ocean. In order to exploit this information
one must first identify each of the measured multipath arrivals. Here we -.- t

• .0 . addressethe related problems of identifying multipath arrivals and the
*; subsequent inversion of this data for the ocean structure. - .

I. INTRODUCTION

Sound speed profiles in most of the worlds deep oceans are characterized
by a well defined minimum at a depth of about one km. An acoustic source
located within the ocean sound channel and a separate similarly placed
receiver are connected by a number of ray paths (multipaths). This situation
is depicted in Figure 1. The arrival pattern measured at the receiver
contains a number of peaks (if the source bandwidth is sufficiently broad);
each of these peaks corresponds to one or more of the multipaths. The
exact number and structure of multipaths depend on the details of the
sound channel and the positions of the source and receiver. As each multi-
path samples the ocean differently each contains unique information about
the sound speed structure of the ocean.

Recently Munk and Wunsch' proposed a scheme to exploit this information.
The purpose of the scheme, which they called ocean acoustic tomography, was
to monitor the ocean's mesoscale variability (with a time scale of a few
weeks and a spatial scale of about lOOkn). They proposed setting out an
array of acoustic sources and receivers around the perimeter of some ocean
volume (see Figure 2). Each source transmits to each receiver. The multipaths
between each source -receiver pair contain information about the vertical
ocean structure. The different source-receiver pairs contain information
about the horizontal structure of the ocean. The combined information gives
a three-dimensional picture of the ocean.

The present study deals with two related problems, both of which loosely
fit under the heading, "Pattern Analysis in the Marine Environment."
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Figure 1. A schematic diagram showing: (left) a typical deep ocean sound
speed profile; (center) selected acoustic ray paths connecting source and
receiver; (right) an arrival pattern measured at the receiver. Numbers

; identifying arrival pattern peaks correspond to those identifying ray paths.
The forward problem (discussed in the text) proceeds from left to right.
The inverse problem proceeds from right to left.
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Figure 2. The acoustic source-receiver array used in the 1981 acoustic
tomography experiment. The center of the 300 km x 300 km grid was located
at 700 W, 260N.
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The first problem is the forward problem of identifying peaks in a
measured arrival pattern with ray paths in the ocean. The second problem
is that of inverting a measured arrival pattern for the ocean structure.

II. THE IDENTIFICATION OF ACOUSTIC MULTIPATHS (THE FORWARD PROLBEM)

An essential preliminary step to using acoustics to monitor the
ocean is identifying arrival pattern peaks with rays in the ocean. The

*information which might be used to make such an identification is listed
below (note that the problem is discussed from a ray viewpoint - as
opposed to an expansion in modes):

A. TRAVEL TIMES

Here predicted travel times are compared to peak times in a
measured arrival pattern. The comparison can be made using either relative

or absolute travel times. In order to use absolute times, however, one
must know the source and receiver positions extremely accurately and
source and receiver must contain accurate synchronized clocks. These
requirements are extremely difficult to meet in the ocean environment.

B. AIPLITUDES

Predicted amplitudes can be compared to those measured. Again the
comparison can be made using either relative or absolute values. Because
of the extreme difficulty of modelling the physical processes involved,
however, it is generally not practical to attempt to compare absolute
amplitudes.

C. ARRIVAL ANGLE

3 If one has an array of receivers, the ray inclination can be
measured and compared to the predicted value. This information has been
exploited by Worcester.2

0. PHASE

Each time a ray touches a caustic it undergoes a phase delay
of 7/2. If a broad-band signal is transmitted this phase shift of each
spectral component is equivalent to a Hilbert transform. As before
predicted and measured phases (pulse shape) can be compared.

We shall concentrate on exploiting travel time information. The method
we have used to compute the predicted travel times has been described
previously.' " The technique involves computing the WKBJ Green's function,
an approximate solution to the full wave equation for an impulsive point

source. As the technique is based on the WKB approximation it is not
uniformly valid. It does represent a significant improvement over geometric

L ray theory, however; it is valid at caustics, for instance. The technique is
applied here to model oceans in which sound speed is a function of depth
only. Ab the technique is fundamentally a broad-band anproximation (one
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computes the acoustic impulse response of the ocean), it is particularly
well suited to the exploitation of travel time information.

We show now two examples of successful identification made using
the WKBJ Green's function. The procedure we follow is extremely simple:
1) Using all of the available information on the sound speed structure
between source and receiver (measurements made during source-receiver
deployment, historical data, etc.) we construct a sound speed profile;
2) Using this sound speed profile we compute the impulse response (WKBJ
Green's function) and compare it to the measured data. If there is a
one-to-one correspondence between measured and computed arrival pattern
travel times (and to a lesser extent, amplitudes) we feel confident that
the identification has been made. Examples of successful identification
for a 215 km 224 + 8 Hz transmission in the North Pacific 2 and a 315 km

224 + 8 Hz transmission in the North Atlantic 5 are shown in Figures 3 and
4 respectively. Other examples of successful identification have been
reported elsewhere. 5,6

I1. THE INVERSION! CF ACOUSTIC MULTIPATH DATA

The inverse problem is concerned with the problem of using a
measured acoustic arrival pattern to infer something about the ocean's
sound speed structure. The approach we take is a perturbation method:
perturbations to an initial arrival pattern are used to compute perturbations
to the corresponding initial ocean model. The initial model might be the
initial state from which we wish to infer the oceans time evolution, or

an initial guess at the correct model.

The first step in the inversion is to parameterize the m.odel with
./ a finite number of parameters (these might be the sound speeds at fixed

depths or a set of modes, for example). Next,the data (to be specific
we consider travel times) is expanded in a Taylor series expansion in the
model parameters:

T+ T I i = travel time indexT i +  (m im ) +

am j = model parameter index

* The superscrips o and I refer to the ocean and initial model, respectively.

Terms higher than first order in 6m are neglected and the equation is
written

.... aT.
Ti

T. 7- 6m.7 1 in. 3

This system of equations is then solved for the model parameter corrections,
•,mj. The linearization is an approximation so in general it is necessary to
iterate. Using this procedure the initial model is replaced by the corrected
model in. = mi + em.). The entire procedure is then repeated as many times as

j j
necessary.
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II Figure 3. (top) Mleasured arrival pattern for a 215 km 224 + R Hz transmission
in the North Pacific. (bottom) WKBJ impulse response calculation made using the

• "- sound speed profile measured during deployment of source and receiver.

Selected arrivals are identified; + 8(00m) refers to an upward launch angle
"" ';' with 8 ray turning points, the upper turning depth being at 40m. Note that

• - 'the third prominent peak in the data is predicted hy the WKBJ impulse
response calculation but not by geometric ray theory. The time origin of

" -- the measured arrival pattern was adjusted to give the best fit to the
;. calculated ones.
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Figure 4. (top) measured arrival pattern for a 315 km 224 + .R Hz
transmission in the North Atlantic. (bottom) vYBj impulse response
calculation made using sound speed profile measured at the time the
transmission was made. Selected arrivals are identified. The time

* origin of the predicted arrival pattern was adjusted to give the best
fit to the measured pattern.
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All the foregoing remarks apply if data other than travel times (arrival
pattern peaks) are being inverted. Brown' discusses the problem of inverting
the entire arrival pattern. In this case Ti is replaced by Pi, the ith point
in the discrete time series recorded at the receiver. Munk and Wunsche discuss
the problem of inverting frequency shifts in modal dispersion curves.

As an example of an inversion, Figure 5 shows one horizontal slice of
" "a preliminary three-dimensional inversion of travel time data collected during

a 1981 acoustic tomography experiment.5 The inversion was done by separating
- the three-dimensional inverse problem into vertical and horizontal slices

(details are given in Brown9 ) as suggested by Munk and Wunsch.' This is a
simplifying assumption which significantly reduces the computational burden
of doing the inversion at the expense of introducing some error. Preliminary
inversions of the same data set done without making the separability
assumption are shown in reference 5. While the inversion results shown in
Figure 4 are not perfect the main features of the measured field have been

. reproduced. We conclude that inverse methods combined with remote acoustic
measurements may be used to monitor mesoscale ocean structure.
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Principal Components as a Method for Atmospherically
U Correcting Coastal Zone Color Scanner Data

Ronald J. Holyer

Naval Ocean Research and Development Activity
-L NSTL, Ms. 39529

o0 ABSTRACT

The Coastal Zone Color SI-anner (CZCS) images the earth's oceans in five

" visible/near-IR spectral bands. In the visible portion of the electromagnetic

spectrum, satellite observed radiance typically consists of approximately 90% of

atmospheric backscatter and 10% of ocean-scattered radiance. Subtle color

signatures associated with oceanic features are frequently masked by this

atmospheric path radiance. Accurate atmospheric correction of CZCS data is,

therefore, a prerequisite to optimum information extraction from this im.gery. The

most widely accepted atmospheric corrcction scheme for CZCS data, based on a single

scattering model of the atmosphere plus certain assumed optical properties of the

ocean, has several inherent drawbacks that limit its effectiveness. Principal

" "Components Analysis, a common pattern recognition tool, is offered as an alternate
atmospheric correction scheme based upon a statistical rather than a modeling

approach. The Principal Components method is applied to a representative CZCS data

set and a comparison is made with corrections derived by the modeling method.

. I. INTRODUCTION

The Coastal Zone Color Scanner (CZCS) is a six-channel scanning radiometer in

NIMBUS-7. The CZCS channels measure the earth's radiance in spectral bands centered

at 443 nm, 520 nm, 550 nm, 670 nm, 750 nm, and 11,500 nm (Hovis, 1980). The first

four channels are in the visible, the fifth is in the near (reflective) IR, and the

;ixth is in the thermal (emissive) IR portions of the electromagnetic spectrum. The

-iliance of the ocean viewed from space by channels one through five of the CZCS is
In,,indtion of radiance backscattered out of the ocean plus radiance

ittered by the atmosphere and radiance reflected by the sea surface. For most

-v.nic applications of CZCS data, it is only the upwelled radiance from



within the water volume that is of interest. In the visible part of the spectrum 
the unwanted radiance (i.e., atmospheric backscatter and surface reflectance) 
typically accounts for more than 90% of the observed radiance. Therefore, very 

accurate removal of the unwanted radiance is necessary to achieve reasonably 
accurate estimates of upwelling subsurface ocean radiance from CZCS data. 

The most widely accepted metnod of applying atmospheric corrections to CZCS 
data ~tilizes a mathematical model of the atmosphere based on single-scattering 
theory (Gordon, 1978). The single-scattering model, which will be discussed briefly 

in the following s~ctions, requires several assumptions about the scattering or 
absorption properties of the atmosphere and ocean. These assumptions are valid in 
many cases, but can lead to significant uncertainties in the corrected data in 
other cases. This paper will demonstrate some of the uncertainties encountered in 
t:topliotion 01 tne \:ivrdon \l:J-;-~j 1nethod. 

s ;, _,,tE:~native to modeling the physics of the ocean-atmosphere system, 

thiJ ,JapEr susqes~s that atmospheric correction can possibly be approached as a 
stat)stica~ proolem- Principal Components Analysis (PCA), a statistical tool widely 
used in the field of pattern recognition, is offered as the basis for a new 
atmospheric correction method that avoids many of the problems associated with the 
mcdeling appr:.ch. However, it should be noted that at the present stage of 

rtevelopment, the PCA method does not result in radiance values for each spectral 
banrl, but rather generates an atmospherically corrected image in an abstract 
mathematir~l measu~ement space. For this reason the PCA method is presently not of 
interest ~~· applica~ions where absolute spectral radiance values are required. 

rhus, i L is not presented as a replacement for the modeling methodology. Rather, 
principal c'Jmponents ;re useful in applications where the desired analysis consists 
of descriptive interpretation of ocean features seen in the CZCS imagery. 

II. 8ACKGROUND 

,\brief and necessarily incomplete overview of the CZCS atmospheric 

correction ~roblem is ~iven here to identify some of the sources of uncertainty in 
the single-sc0t.tering rnodel methodology, and to establish the desirability of 
introducing new techniques that do not encounter some of these problems. 
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A. THE SINGLE-SCATTERING APPROXIMATION

Single-scattering theory, as the name implies, ignores multiple scattering.

In other words, a photon is assumed to travel the atmospheric path from space to

the earth's surface unperturbed or experiencing, at most, one interaction with

atmospheric constituents. This theory is reasonable for optically thin atmospheres,

but begins to break down for more optically dense cases. The advantage of

-"single-scattering theory is that the Rayleigh (molecular) and aerosol (particulate)

contributions to the backscattered radiance of the ocean are additive. Thus, the

-* observed radiance of the ocean viewed from space is given by

L(X) = L (k) + L (X) + t(x) Lw(x) (W)r a w

where L(A), Lr (A), L a(), and Lw (,) are the observed, Rayleigh, aerosol, and ocean

radiances, respectively, at wavelength k, and t(A,) is the transmittance of the

atmosphere. In Eq. (1) L( ) is observed by the CZCS radiometer and Lr (x) can be

calculated with reasonable accuracy (Frohlich and Shaw, 1980). However Lw( ) and

L (A) cannot be separated in Eq. (1), so a direct determination of L (A) is not

possible.

To solve for L (x) Gordon (1978) has used two wavelengths simultaneously.
STaking two equations like Eq. (1), one atA 1 , and the other at XA, the solution of

the simultaneous equations yields

t(x I) Lw(,I) = [L(A I) - Lr(XI) - S(XIA 2 ) (L(x 2) Lr(, 2 ) - t(A2 ) L(k 2 ))] (2)

where S(.IA 2) = La(A1)/La(A2) (3)

Gordon (1981) gives the following expression for S(XI,lx:

S( IA) = e(l ) [Fo(Al)/Fo()] expj-ETo(X I ) ]+ 1/s] (4)
* 2 e 1  2  0l ' 1 0 1  - To(A] [1/ , + L

where T is the ozone optical thickness, F is the extraterrestrial solar

0 0

3' irradiance, )V and i's are the cosines of the viewing angle and solar zenith angle,

. ,q respectively, and e(Al,A 2 ) is related to the aerosol optical thickness Ta and the

single-scattering albedo w0 through

e('1l '2) = wo("l)Ta('l)/wo( 2)TaL'2) (5)
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To solve Eq. (2) for t(A1) Lw(AX), one must make assumptions concerning Lw(X ) and

e( A1 ,A 2 )

B. ASSUMPTIONS ABOUT OCEANIC SPECTRAL RADIANCE

The term in Eq. (2) for water radiance at x2 ' Lw(k2) is handled by selecting

X2 such that L ('k) = 0: thus, this term can be ignored. For CZCS the red channel at2 w 2
670 nm is used at x2. This band is chosen because the absorption coefficient of sea

water is higher here than for other parts of the visible spectrum so a relatively

small backscattered return from the ocean can be expected. Figure 1 shows upwelling

spectral radiance data measured just above the ocean surface at several stations in

the Gulf of Mexico in December 1978. This figure shows that radiance does fall off

drastically at red wavelengths. Actually, much of the observed radiance at 670 nm

in Figure 1 is surface-reflected skylight rather than backscatter. Thus, the

assumption of negligible ocean radiance in CZCS channel 4 seems to be reasonable

for the deep ocean (low turbidity) cases. However,this assumption will not be

valid for turbid coastal waters where significant backscatter occurs at 670 nm.

Neville et al. (1980), reporting on CZCS work done in Lake Ontario, cite

appreciable 670 nm reflectance as the reason for the poor performance of the Gordon

(1978) method in that case. An iterative algorithm which reduces the 670 nm water

radiance problem has been developed by Smith and Wilson (1980).

C. ASSUMPTIONS ABOUT THE UNCERTAINTY IN SPECTRAL DISTRIBUTION OF AEROSOL

BACKSCATTER

The factor e(A1,-2) in Eq. (5) represents the spectral variability in the

aerosol phase function. Information on atmospheric aerosol phase functions is

sparse. For simplicity it can be assumed that the aerosol optical thickness at A,

Ta(), varies with wavelength according to the power law

TaW(x) Ta ( o  ( 0 /X)n (6) -

where n is referred to as the Angstrom exponent (Angstrom, 1961). To make an

atmospheric correction to CZCS data one must either measure n at the time of

satellite overpass or assume some n value. Gordon (1978) assumes that the aerosol

* 202
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Figure 1. Spectral radiance of the ocean measured from just above the sea surface
at several locations in the Gulf of Mexico during November and December 1978.
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% phase function depends weakly on wavelength over the visible part of the spectrum,

i.e., n is approximately zero. However, it is not a simple matter to assume n since
the Angstrom exponent can range between 0 and 2 (Robinson, 1966). Tomasi and Prodi

(1982) measured atmospheric turbidity in the Red Sea, Indian Ocean, and Somalian

Coast and found n values generally ranging between 0.2 and 0.9.

Measurements of aerosol optical depth of the atmosphere were made by the -

* author in November and December 1978 in the Gulf of Mexico. Figure 21shows

representative measurements along with power law fits to the measured values. It is
seen in Figure 2 that the power law fit to aerosol optical depth is only

approximate and that the Angstrom exponent varies from day to day. For the Gulf of

Mexico data (the three shown in Figure 2 plus four others) the Angstrom exponents

from the power law fits ranged from 0 to 1.9 with a mean value of 1.2. This range

agrees well with the range previously cited and the mean is close to the 1.3 value

often used for continental regions (Robinson, 1966). Because of this type of

aerosol variability, large errors in correction terms can result when 670 nm values

are extrapolated into the green and blue regions based on some assumed value for n.

Gordon (1981) has proposed the use of clear water spectral radiance values

within a scene to derive values for the Angstrom exponent from the CZCS data

itself. Good results are claimed to be possible with the clear water radiance
3

method if water area with less than 0.25 mg/in of chlorophyll-a is available within
the scene.

The modeling approach to atmospheric correction can then be summarized as

follows. Each of the CZCS channels 1 through 4 are corrected for the Rayleigh

backscatter of the atmosphere. Then, since the ocean is "black" at 670 nin, any

radiance remaining in channel 4 after Rayleigh correction can be attributed to

atmospheric aerosols. The Rayleigh corrected red (670 nin) channel is, therefore,

used as the aerosol correction term to be applied to channels 1 through 3. The red

* channel aerosol correction is weighted differently before subtraction from each of
the channels 1 through 3. The weighting factors require knowledge of the solar

spectral irradiance, the ozone optical depth and the Angstrom Exponent for the

atmospheric aerosols. The resulting corrected imagery may differ significantly in

some cases from the true ocean spectral radiance for three major reasons; a) the

* single-scattering approximation is poor because the atmosphere is optically thick,

bthe ocean is not really "black" at 670 nm; o C) dfn incorrect value has been

used for the Angstrom exponent.
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4
III. SINGLE-SCATTERING MODEL APPLIED TO A TEST CASE

*'" *A simplified form of the single-scattering model has been applied to a test

data set to a) illustrate the essential elements of this established methodology;

and b) serve as a reference for evaluating the performance of the statistical

method. The test set is from the Grand Banks area of the North Atlantic. Figure 3

is a color composite of the CZCS channels 1, 2, and 3 of the test data. Figure 4 is

the coincident CZCS channel 6 infrared image. The test data is from CZCS orbit 2811

on 15 May 1979 at 1456 Z. The area shown is oceanographically very dynamic because

it covers the confluence of the three major current systems; the Gulf Stream, the

Labrador Current, and the North Atlantic Gyre. Note that although the surface

patterns created by the currents are well delineated in the IR imagery (Fig. 4),

the visible color image (Fig. 3) does not exhibit similar patterns. Either there is

no color signature associated with these divergent ocean systems or else the

". . relatively small ocean surface upwelling radiance is obscured by a much stronger

atmospheric backscatter. This is, therefore, an ideal case for demonstration of

atmospheric correction procedures.

The conventional single-scattering model atmospheric correction was performed

on this test data following the general methodology previously described. Clear

water radiances (Gordon, 1981) were used to derive an Angstrom exponent of 2.8 for

this case. Solar irradiance values, F (x), were assumed to be 184.63, 185.57,

185.01 and 153.13 in CZCS channels 1, 2, 3, and 4, respectively (Austin, 1981). The

values for ozone transmittance of the atmosphere, To(A), were taken to be 0.0009,

0.0146, 0.0266 and 0.0138 from LOWTRAN-5A (Kneizys et al., 1980) code for

mid-latitude summer atmosphere. Solar and satellite zenith angles were held

S. constant at their values in the box drawn on Figure 3. Solar and satellite zenith

angles at that location are 23.5' and 250. Not permitting these angles to vary

spatially results in Rayleigh correction errors of 15t at the left edge and 25t at

.. the right edge of the image shown in Figure 3. The limb effects seen in the

corrected data result from ignoring angular dependency in the Rayleigh correction.

These limb effects should largely disappear if angular dependency was included in

Rayleigh processing.
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- - Figure 4. Image of CZCS channel 6 (infrared) data coincident with Figure 3. Labels
on image identify major oceanographic regimes.
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When the single-scattering correction was applied, the resulting corrected
* radiance values in channel 1 (443 nm) were negative. This, of course, is a physical S

impossibility implying that the correction method or parameters input to the method
* were erroneous. Negative corrected radiances could result from several sources
* including uncertainties in solar spectral irradiance or uncertainties in sensor

calibration. In this case the Angstrom exponent value of 2.8 derived from clear
water radiances is suspected. Since the Angstrom exponent is generally considered

*to range from 0 to 2, the 2.8 value seems suspiciously large. It is not obvious why

the clear water radiance gave such a large value since we have no ground truth or

* other collaborating data for this case. The clear water radiance approach was,
therefore, abandoned and a mid-range Angstrom exponent of I was assumed. Under this

assumption, the following values of S(X,A 2). resulted.

S(443,670) = 1.80
S(520,670) = 1.56
S(550.670) = 1.44

*Correction was repeated using these values. The channel 1 radiances came out
positive when n=1 was used. A subjective visual examination of the corrected

imagery indicated that a reasonable correction had been achieved.

Figure 5 is a color composite formed from atmospherically corrected channel

*1, 2, and 3 data. The correction has effectively stripped away the atmospheric path

radiance revealing color patterns in the ocean below that show the same general

features seen in the IR image in Figure 4.

IV. A STATISTICAL APPROACH

To overcome some of the problems just described, atmospheric correction of

CZCS imagery can be approached as a statistics problem. Assumptions about physical

properties, such as the ocean is black at 670 nm or aerosol phase functions vary

only weakly with wavelength, are replaced with assumptions about the statistical

properties of the data. Specifically, one begins by assuming that an area of the
image can be chosen for analysis where the majority of the variance in the

* multi-spectral measurement space is attributable to aerosol variability. This

implies two criteria for selection of the analysis area. First, it should be an
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area of high variability in aerosol concentration, and second, the ocean in the 
selected area should be as nearly uniform in color as possible. Thus, coastal areas 
with their typically high water color variability are to be avoided. Likewise, 
clouds are to be avoided because their brightness saturates the eight-bit dynamic 
range of the CZCS. Saturation introduces a non-linearity into the problem that 

degrades the results of the subsequent PCA, which is a linear transformation 
technique. 

A. PRINCIPAL COMPONENTS ANALYSIS 

Principal Components Analysis is most frequently used in pattern recognition 
problems to reduce the dimensionality of a measurement space. For example, it may 
be possible to transform ten-channel multispectral imagery into only three channels· 
and yet preserve 95% or more of the ••information" present in the original 

ten-channel data. PCA would be one possible method of defining the optimum 
ten-dimensional to three-dimensional transformation so as to minimize "information" 
loss. In PCA "information" is synonymous with variance, i.e., PCA as a 

dimensionality reduction tool preserves maximum possible variance. In some 

situations, of course, variance corresponds to noise rather than to information, so 
the analyst should know the statistical properties of his data before choosing PCA. 
In the present case the image subarea selected for PCA has been deliberately chosen 
to have prescribed statistical properties. If the desired properties do exist in 
the data, then the same characteristics of PCA that make it useful for 
dimensionality reduction can also be utilized to achieve atmospheric correction. 

A non-rigorous ;~athematical defir.itior. of PCA is as follows. PCA is the 

transformation (linear) of the original variables into a set of new variables 
(called principal components) which are considered in a sequence such that each 
succeeding component is that linear combination of the original variables which has 
the maximum variance of all possible combinations, under the constraints that each 

component be uncorrelated with an orthogonal to all preceding components. For more 

details see references such as Anderson (1958) or Cooley and Lohnes (1971). It can 
be shown mathematically that the principal components defined in this manner are in 
fact the eigenvectors of the covariance matrix. Further, it-can be shown that the 
i-th principal component is identically equal to the i-th eigenvalue of the 
covariance matrix. 
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The variance ordering properties of the sequence of principal components

combined with the fact that most of the variance in the selected image subarea

results from aerosol variability, permits removal of aerosol effects. If the first

principal component maximizes variance, then this component captures the aerosol

".'." contribution to total variance. In other words, the first principal component is
oriented in the original measurement space parallel to the aerosol variability.

Component one can then simply be discarded to make the aerosol correction. In the

CZCS image shown here to illustrate the technique, the original measurement space

is four-dimensional (spectral channels 1 through 4). PCA results in a

transformation to a new four-dimensional space. One of these new dimensions

(specifically, the first one) is removed (projected onto the other three in

mathematical terms), resulting in a three- rather than four-channel image; but in

."- the course of reduction in dimensionality, the obscuring effect of atmospheric

aerosols is removed. The resulting three-channel image will more clearly show the

*Y-Y oceanic portion of the variance that was in the original imagery.

B. STATISTICS OF THE TEST CASE DATA

.%.% Figure 3, showing the Grand Banks test data set, has a box overlaid on the

image that indicates the area selected in this case for PCA. Statistics for the

boxed subarea are given below along with the principal components and the

. eigenvalues of the covariance matrix. As was previously mentioned, the principal

components are formed from linear combinations of the original spectral bands. If

x~i is the i-th subarea pixel from channel J, then the k-th principal component,

Pik can be written

"'" '-..-. ik =  kj xij .1 1

*; The coefficients akj. therefore, define the transformation from spectral

. measurement space to principal component space. Statistics below are given in

vector form where the vector components represent each of the four spectral bands.
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Grand Banks PCA box statistics

mean = 162, 149, 151, 148
std dev = 6.57, 8.64, 10.13, 17.08
elgenvalues = 0.966, 0.028, 0.004, 0.000

0.265 0.381 0.451 0.761

a -0.731 -0.382 -0.159 0.541
-0.529 0.199 0.743 -0.356
0.337 -0.817 0.466 0.015

Note from the elgenvalues that the first principal component (the atmospheric

aerosol component) in this case accounts for 96.6% of the total variance within the

box. This means that only 3.4% of the variance Is of oceanic origin, which shows

why one could not see oceanic features in the raw data in Figure 3.

It is also of interest to note the akj values. In particular, the weights for

the third principal component are interesting. The coefficients -0.529, 0.199, and

0.743 for channels 1, 2, and 3, respectively (row three of the akj matrix),

• indicate that the third component has captured the variability associated with

changes in chlorophyll concentration. The association of this component with

chlorophyll is based on the fact that it will be composed of contributions from

channels 1 and 3 that are large but of opposite sign plus a relatively small

contribution from channel 2. This weighting exhibJts the "hinge point" behavior

m that is well known for chlorophyll-a (Duntley et al., 1974). It can, therefore, be

predicted that the third principal component will probably show the most oceanic

structure for this deep ocean location where chlorophyll-a is most likely the

primary contributor to ocean color.

C. CORRECTED IMAGERY

- The akj coefficients derived from PCA within the box can now be used as a

transformation matrix to be applied to the entire image according to Eq. (6). The

first principal component, which contains 96.6% of the total variance in the

original image, can be associated with atmospheric aerosol backscatter if the

initial assumptions about statistical properties of the data were valid. Figure 6

shows the first component alongside the original channel 4 image with the Rayleigh

contribution removed. Channel 4 minus the Rayleigh radiance of the atmosphere is
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. Figure 6. Comparison of the aersol corrections for the two methods. Channel 4

minus Rayleigh is the aerosol correction from single-scattering theory while the
first principal component is the aerosol correction from the PCA method.
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the aerosol correction factor utilized in the single-scattering method. Visual
comparison of the first principal component with the channel 4 minus Rayleigh image

1.0 confirms that the first principal component is essentially the aerosol contribution
to the CZCS data.

As expected, based upon the previous cursory examination of the akj

coefficients, the third principal component did show the most features of apparent

oceanographic origin. Figure 7 is an image of the third principal component which
accounted for 0.4% of the total variance. Comparison of Figure 7 with the IR data

* (Fig. 4) and the corrected color image (Fig. 5) reveals that the oceanographic

features of the earlier figures are also evident in the third principal component.

Thus, the third component is, in effect, an atmospherically corrected image showing

ocean color variability patterns. It should be noted that the third component will

not always be the one to five maximum definition of oceanic patterns. In other

cases where PCA was applied to a small subsection of an image so that angular

variation of path radiance was small, the second component seemed to contain the

chlorophyll-a variance and, hence, the best oceanic patterns. In general, one I.

cannot say which component will show the ocean patterns the best, nor can one even

assume that any single component will yield optimal results. It may be in some
cases that several of the components can be combined to give a corrected image that
is superior to any of the individual components.

The second and fourth components contain some oceanographic information but

are predominated by other influences. The second component, with 2.8% of the total

variance, seems to represent the angular dependency of the atmospheric path
radiance, while the fourth, with <0.1% of the total variance, contains mainly

random noise. For sake of completeness, components two and four are shown in

* Figure 8.

V. CONCLUSIONS

This paper has shown how one can begin from a statistical frame of reference

and develop CZCS aerosol atmospheric correction terms that are basically equivalent

*to those derived from single-scattering theory. Further, the statistical approach,

based upon Principal Components Analysis, has resulted in an aerosol corrected

image that shows essentially all of the ocean features evident in IR imagery. The
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statistical analysis was accomplished without having to consider such problems as

determination of an Angstrom exponent, the validity of the "ocean blackness at

670 nm" assumption, sensor calibration, or many of the other problems confronting
those using the modeling approach. It is, therefore, concluded that the statistical
approach may be an attractive alternative to single-scatter modeling of the

atmosphere for those applications of CZCS data where image pattern interpretation K
rather than ocean spectral radiance measurement, is the objective. Certainly the

statistical treatment of the CZCS atmospheric correction problem is worthy of

further investigation. Perhaps pattern recognition tools and concepts other than

PCA can also be brought to bear upon the atmospheric correction problem.
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*Water Mass Classification in the North Atlantic
Using IR Digital Data and Bayesian Decision Theory

Robert E. Coulter
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*N Bay St. Louis, MS 39522

r-4, ABSTRACT

.,-) method is described which utilizes Bayesian decision theory and

-. __ his orical statistics of sea surface temperature to classify surface water
masses and ocean fronts from satellite-derived infrared data. Probabilities

0 that certain features occur are determined from the normal distributions of
specific statistical characteristics, known a priori, and the same

° ' characteristics computed from satellite data. The better the match between
the a priori information associated with a feature and the computed
statistics, the higher the probability that the feature exists. The maximum
probability determined by Bayes' theory is subjected to two tests, based on
absolute and relative threshold values, to reduce the chance of incorrect
classification. The method was used for classifying satellite IR data to

° locate the major wate- masses in the Gulf Stream region. Results were
compared to frontal positions obtained by conventional, subjective means.

I. INTRODUCTION

An ocean front is a zone of rapid transition between two water masses of
-. different physical characteristics. In the northwestern Atlantic, the

important fronts can be recognized at the surface from a significant
difference in mean temperature.

Generally, the identification of surface fronts from satellite infrared
(IR) imagery is a manual, subjective procedure. For a timely environmental
product, this procedure must be automated. The fully automated sea surface
temperature (SST) analysis techniques that are presently operational are of
limited value when applied to the detection of fronts. For example, the SST
analyses from Fleet Numerical Oceanography Center (FLENUMOCEANCEN) and the

.- National Oceanic Atmospheric Administration (NOAA) tend to smooth out fronts
and are not real-time products.

Gerson and Gaborski (1977) and Gerson et al. (1982) experimented with a
sequential decision rule scheme for the automatic location of ocean fronts
from GOES satellite data. This report presents the preliminary results after

' ."applying another decision rule to a satellite image containing the Gulf
Stream. This rule, described in Horton and Coulter (1981), is based on Bayes'
decision theory. With it, all the decisions are combined in one step as

-- opposed to the above sequential scheme.

This decision rule technique is preferred for automatic pattern
discrimination because one knows precisely what is searched for in the data.
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The computer can be used to determine whether or not a data point (or pixel)
belongs to a certain front or water mass by comparing the data to some
parameter that is characteristic of the front or water mass. In short, we
combine Bayes' Decision Rule with our oceanographic experience.

II. BAYES DECISION THEORY

Bayes decision theory is a fundamental statistical approach to the
problem of pattern classification. It is based on the assumption that the
problem is posed in probabilistic terms and that all the relevent
probabilities associated with the states of nature to be detected are known "a
priori".

It is necessary first to determine the probability that the statistical
parameter xi, computed from the input data, represents the state of nature, mj
by equation (1):

P(xi/mj) exp ( )) (1)

where 1 and a2 are the mean and variance of the normal distribution of the h
same statistical parameter x i that is associated, a priori, with mj. This is
called the state-conditional probability.

If n statistical parameters are utilized to identify mi, the
probabilities that they represent mj can be combined in thi manner:

P(x. . .xn/mj) = P(x"m) P(x2/mj)....P(xn-I/mj) • P(xn/mi) (2)
4.. P( l.. . X / j  P X /4

assuming that each probability is independent of the others.

This, together with the a priori probability that m. occurs (P(mj)),
leads to the "a posteriori" probability that mj occurs gqven xi. The
normalized a posteriori probability is:

P(x ,. ..x /m.)P(m.)

P(mj/ ) = n j .

P(Xl,...xn) (3)

where p(xl,...xn ) is the numerator summed over all j's.

If there are two possible states of nature, ma and mb, mb is selected as
the most likely to occur if P(mb/x) > P(ma/x).

A more rigorous description of Bayes' Decision Rule is described in Duda and
Hart (1973).

111. DATA

GOES satellite images covering the North Atlantic Ocean were surveyed to
locate a cloud-free area th t incliv' J the Gulf Stream. The northwestern
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Atlantic south of Cape Hatteras was mostly cloud-free on 10-11 April 1980 and
a set of four high resolution images from the NOAA-6 polar orbiting satellite
covering this period were obtained from NOAA.

The images received did not measure up to expectations, primarily due to
an abundance of low level cloud cover that was not evident in the GOES
images. Only one image was deemed suitable for analysis. The data consisted
of one visible channel and three IR channels. To roughly simulate APT low
resolution (4 km) data, the pixels were averaged into consecutive 4 by 4
windows and only the visible and far IR (10.5-11.5 pim) channels were
utilized. Temperatures (in Celsius) were computed from the IR data and were
not corrected for water vapor contamination. Two degrees were added to
account for CO2 attenuation and reflectivity.

IV. COMPUTATIONAL PROCEDURE

A. CLOUD AND LAND DETECTION

In the visible image, the water was clearly less bright than the
* land and clouds. This was important because the land-water boundary was

barely discernible in the infrared image. The-,efore, the combination of the
visible and the IR data was necessary to prevent the misclassification of land
and clouds for water and vice versa.

This compositing of the two images was accomplished by first
selecting a threshold visible value with the visible data identifiable as land
and cloud cover on one side of the threshold and that indicative of water on
the other side. Next', the visible data identified as water were set equal to
1 and the land and cloud pixels were arbitrarily assigned the value of 10 to
exaggerate their separation from the water pixels. Finally, these numbers
were multiplied by the IR-derivel temperatures which left the water surface
temperatures unchanged (when multiplied by 1) while making them quite distinct
from the cloud and land temperatures (which increased tenfold).

P 8. COMPUTATION OF STATISTICAL PARAMETERS FROM THE DATA

Four statistical parameters were selected to identify the surface
ocean fronts and water masses (figure 1 from Khedouri et al., 1976) from the
temperature data. They were mean temperature, standard deviation of tempera-
ture, total temperature gradient, and east-west temperature gradient. The
equations used are shown in Horton and Coulter (1981).

* - The statistics were computed by marching across each row of
temperatures in overlapping square windows as diagrammed in figure 2. A 5 by
5 window is illustrated and was initially used but was abandoned in favor of a

46 3 by 3 frame.

C. APPLYING THE BAYES THEOREM

With the 3 by 3 window, 3 rows by 128 columns of temperatures were
initially entered into the algorithms for computing the statistics. This
resulted in one row of 126 values for each of the four statistical
parameters. In equation (1), these statistics were matched to the same a
priori statistics associated with the fronts and water masses (designated in
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Figure 1. Fronts and water masses in the western North Atlantic.
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figure 1) to produce the state-conditional probabilities. For example, the
probability that a mean temperature, computed from a 3 by 3 array of IR-
derived temperatures, represented Slope Water was obtained by comparing it to
the climatological mean temperature of Slope Water at the location of the
array. The a priori statistics, especially mean temperature, do, of course,
vary with geographical position; however, for the first test of the Bayes
classifier, they were held constant per state of nature. The only exception
was to assign two mean temperatures to Shelf Water because of the considerable
variability in temperature of this water mass with location relative to the
others.

The state-conditional probabilities were combined by equation (2)
and the results were left as the final a posteriori probabilities without
proceeding to equation (3). This happened because of two simplifications.
First, the a priori probabilities were set to 1 implying that all the states
of nature had an equally likely chance of occurring and second, the
probabilities were left unnormalized. This conserved mass storage and reduced
computational time.

Finally, the states of nature associated with the maximum a
posteriori probabilities were output as a row of symibols defined in the key in

- - figure 4. This entire procedure of computing statistics and probabilities was
repeated each time a new row of 128 temperatures was input and combined with
the previous second and third rows. This limited the storage of temperatures
to three rows at a time.

D. AUTOMATED TESTING OF RESULTS

After each cycle, the maximum probabilities were subjected to two
tests to reduce the chance of incorrect classification. To start with, the
maximum probabilities had to exceed a minimum value (arbitrarily set at 0.01).

Next, a relative threshold technique was employed. This required
that the maximum probability or the probability of the most likely state of
nature divided by the probability of the next most likely state of nature
equal an amount greater than the relative threshold. If a maximum probability
failed either of the tests, a default symbol was inserted in place of the

4- feature symbol.

V. RESULTS

The same data were analyzed subjectively to provide a comparison to the
automated classification. This manual analysis depicted in figure 3 is not
definitive due to a lack of ground truth and likely errors in interpretation.

The fronts are represented by the lines separating the water masses
identified in figure 3. The Slope Front separates the Shelf Water and Slope
Water. The North Wall is the shoreward boundary of the Gulf Stream and the
South Wall is the seaward boundary. Dotted lines indicate weak and partially
indeterminate fronts. The dotted line at the bottom of the figure represents,
a front that could be related to the merging of the Antilles Current with the
Florida Current further south or to a discontinuity in the amount of water
vapor in the atmospheric column (i.e., a false front).
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Figure 3. Manual analysis of the satellite image, 11 April 1980, 1400Z.
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The warm clouds are clouds (or haze) indicated by the visible data but not

evident in the IR temperatures. Conversely, cold clouds were evident in the
~? IR but not necessarily in the visible. The area of cold clouds was also

-. extended to cover the area where the surface structure could not be
resolved. This confusion was probably due to very thin cloud cover (not

* obvious in the visible and IR) surrounding the cold clouds.

Figures 4 and 5 are the computer analyses, enhanced for display, with the
~ boundaries in the manual analysis overlaid. Both figures show confusing
*~ ~ structure where the manual analysis was labeled cold clouds. Algorithms for' I% improved cloud removal, water vapor correction, and compositing with previous

classified images should have been applied to prevent this clutter but were
unavailable at the time the analysis was made.

* In figure 4, with no relative threshold applied, the comparison with the
manual analysis is good below the cold cloud line (shown in figure 3).
However, some pixels were classified Shelf Water or Slope Water where the
manual analysis indicates Sargasso Water and vice versa. Figure 5 shows the
results after a relative threshold of 5.0 was applied to the classifications
in figure 4. The classifications that failed the threshold test, indicating
uncertain decisions, were eliminated. Those rejected generally were at odds

-. with the states of nature expected according to the manual analysis.

The remaining classifications represent the tradeoff of less accuracy (by
44not altering the a priori information with location) for a considerable

savings in mass storage. Subsequent experiments on the same image where the a
priori probabilities and mean temperatures were permitted to vary with
location led to a substantial improvement in classification.

4. VI. CONCLUSIONS

1. The use of Bayesian decision theory appears quite promising for
classifying ocean surface features assuming that there are good statistics
available that describe the features.

2. The a priori statistics that are the most variable with location are
the mean temperatures. Since this statistical parameter represents the only

.- * ~discriminator among the water masses, the simplest version of the classifier,
in which the statistics do not vary with location, works better for

* identifying fronts. Other statistical parameters that might separate the
- water masses need to be tested. Otherwise, an increase in mass storage is

necessary to store a latitude-longitude array of mean temperatures.

3.an The accuracy of the classification of both fronts and water masses
ca esubstantially improved by the use of location-dependent, a priori

~,* .,probabilities.
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Abstract

A method for obtaining a spatial convolution mask from a frequency-domain
Sspecification is discussed. This technique is motivated by the need in many

applications to achieve processing speeds that cannot be met via Fourier transform
~formulations. The method is illustrated with synthetic and forward-looking

infrared (FLIR) images

I. INTRODUCTION

The two-dimensional Fourier transform is one of the techniques most often used
for image enhancement and restoration. Image sharpening and smoothing, noise reduc-
tion, contrast enhancement, and image de-blurring have been done with filters in
the Fourier frequency domain [11. These filters tend to be simple, intuitively
understood, and mathematically tractable, making them easy to design and implement.

S Properties of the Fourier transform are well known and help in the filter design
process. Various FFT algorithms have made the transform process for digital

* images practical in speed and size for many applications [11.

Unfortunately, FFT algorithms are not fast enough for on-line, real time rates
(T.V. video frame rates for instance). Real time rates typically require several
images to be processed per second [121 while the fastest FFT algorithms requireI seconds for an image with a reasonable resolution. It is possible to do small
convolution processes at real or near-real time rates, with small (e.g., 3 x 3)
convolution masks [31. Since the Fourier filtering process is mathematically
equivalent to a large convolution process, it is possible to approximate in some
sense the Fourier filtering process with a convolution process involving small
convolution masks. Schutten and Vermeij, for example, have proposed a method for
finding a small convolution mask that approximates a filter given its frequency
domain specification [4]. Schutten and Vermeij's approach is based on the infinite
discrete Fourier transform. In the following discussion we show that it is possi-
ble to obtain the same results using the finite discrete transform and illustrate
the technique with several test patterns and FLIP images.

* 11. GENERATION OF SPATIAL CONVOLUTION MASKS

The process of Fourier filtering a discrete image is equivalent to the follow-.
convolution [11:

* ,~ *Work partially supported by the Equipment Group, Texas Instruments, Inc.,
Lewisville, TX, through an image processing fellowship with the University of
Tennessee.
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N-i N-i1
g(xy) = ) h(x - ay - (8)af(,0) 0 < x, y<N(1)

where:V41. h(x,y) is a spatial representation of the filter,
f(x,y) is the image to be filtered, and
g(x,y) is the resulting image.

The Fourier domain representation of the convolution is

G(u,v) = H(u,v)F(u,v) 0 < u, v < N (2)

where V.
G(u,v) is the Fourier transform of g(x,y),
H(u,v) is the filter (the transform of h(x,y)), and
F(u,v) is the Fourier transform of f(x,y). -,

The objective of the following discussion is to generate a small spatial
convolution mask, h', that approximates the filtering process of a given Fourier
filter H(u,v). The convolution mask would be used in the following convolution
to produce a result image, g', that somehow approximates the result image of the
Fourier filtering process:

N-1 N-1
g'(x,y) = h'(x- cv,y- 8)f( ,8) 0 < x, y < N (3)

U=0 a=0

The convolution mask, h', should have the following properties:

1. h' should be a small convolution mask. This means that for some n<<N,
h'(x,y) = 0 for x or y > n. This gives an n x n convolution mask.

2. h' should approximate h (the spatial domain representation of the
desired Fourier filter H(u,v)) in some way. The method developed here
minimizes the criterion

e2 X jH'(u,v) - H(u,v)1 2  (4)

u v

where H'(u,v) is the Fourier transform of h'(x,y) and .) designates the complex
magnitude.

The Fourier transform of h'(x,y), H'(u,v), is in general given by the following
equation.

H'(uv) h'(xy)e J2vT"'HU,) 1N-I N-i -j7(ux + vy)/N 0 < u, v < N()
"Ii Rx=o y=o: = Y= ' xO (5)•.

Using property 1, h'(x,y) = 0 for x,y -n, the following is obtained:

.p.
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n-1 n-l

H'(uv) I 1i ,y)e-j2ir(ux + vy)/N 0 < u, v < N (6)
x=O y=O

This can be rewritten in matrix notation as

H' = C h' (7)

where:
H' is a column vector containing the terms H'(u,v) in some order,
h' is a column vector containing the terms h'(x,y) in some order,
T is a matrix containing the exponential terms in positions as

determined by the orderings used in H' and h'. The elements of
.j _C will be denoted by C(i,k).

Obviously H' is an N2 vector and h' is an n2 vector. Thus C is an N2 x n2 matrix.
A straightforward arrangement for-H' and h' is row by row. Symbolically, if the
vectors H' and h' are indexed with i = uN + v and k = xn + y, the elements are
given by-

H'(i) H' (uN + v) = H'(u,v) 0 < i < N2 , 0 < u v < N (8)

h'(k) = h'(xn + y) = h'(x,y) 0 < i < n, < x, y < n (9)

This gives the following arrangement for the elements of C,

C(i,k) = C(uN + v,xn + y) = exp(-j27(ux + vy)/N) (10)

:.J Next, we satisfy property 2 by minimizing Eq. (4), which may be expressed as

2 H)(H 2) ' II h 2._,~ ~ (H - H)* (H- H) - _11(1
where I I indicates the complex Euclidean norm. A least-squares solution of
the matrix equation H = C h' will minimize e2. This solution is given by

h' = C# H (12)

where C# is the Moore-Penrose generalized inverse [5]. If C has rank n2, C# can
be calculated by the equation

C# (C*C)-1 c (13)

where * indicates the conjugate transpose.
ii Sine ful 2 N2

Since a full N x N Fourier matrix is guaranteed to have an inverse by the
" existence and uniqueness of the inverse Fourier transform, the matrix will haveZ2

rank N C is composed of unique columns of this matrix, so C must have rank n2.

The foregoing procedure is valid for any arbitrary filter H, and may be
summarized by the following steps:
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1. Input the desired frequency domain filter H. Fcr an N x N filter this will
involve storage of an N1 vector.

2. Generate the transform matrix C. To generate an n x n mask from and
N x N filter requires an N2 x n2 matrix.

3. Calculate the Moore-Penrose inverse usin2 theequation C = (C*C)Ic*..
This requires taking the inverse of an n x n matrix.

4. Calculate the mask h' using the equation h' = C#H.

A drawback of the method, as given above, is that the small convolution mask
generated may have complex terms. Since H and C both contain complex values, C#
and h' may contain complex values. If h'-contaTns complex values, then the
resulting image from the convolution may also contain complex values. From a
more practical standpoint, the method, as stated, generates matrices too large
for many computers. Typical values of n range between 3 and 9. N should be as
large as possible to give maximum resolution to the Fourier filter. Values of
32 or greater are desirable. A straightforward implementation using n = 9 and
N = 32 would require 1024 complex storage locations for H and 1024*81 = 82944
complex number storage locations for C. N = 64, a more desirable value, requires
4096 and 331776 locations respectively. These requirements rapidly strain the
resources of even a large main-frame computer. The addition of some constraints on
the Fourier filter H will eliminate complex values in the equations and reduce
storage requirements to more manageable levels, as discussed in the following
section.

Ill. SIMPLIFICATION OF THE METHOD USING FILTER CONSTRAINTS

The constraints used for simplification should reflect those properties found
in most practical filters. Most practical filters exhibit conjugate symmetry
because conjugate symmetry is necessary and sufficient to ensure the filtered
result will not have any imaginary terms. Also, most filters have only real terms.

Mathematically, these two constraints are expressed by the following two
equations :

1. H(u,v) = H*(-u,-v) (Conjugate Symmetry) (14)

2. H(u,v) = H*(u,v) (H is real' (15)

These constraints allow us to eliminate complex terms in the following manner.
Assume h(x,y) and H(u,v) are transform pairs. They are related by

P.N-1 N-1
H(uv) h(xy)e-J2J(ux + vy)/N 0 < u, v < N (16) "

xZO y=O

Constraint 1 implies h(x,y) is real or h(x,y) = h*(x,y). The second constraint

implies conjugate symmetry on h or h(x,y) = h*(-x,-y) = h(-x,-y). This gives
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2H(u,v) = H(u,v) + H*(-u,-v)
1N-1 N-1

SN-i N-i [h(xy) eJ2r(ux + vy)/N + h*(xjy) e~21(-ux - vy)/N]

x=O y=O
"N-1 N-1 j2"n(ux + vy)/N]

NI N-i e-j2w(ux + vy)/N + h*(-x,-y) e u
N 1 N [h(xy)e
x=O y=O

-lN-i N-i [-J2rr(ux + vy)/ N + eJ2w(ux + vy)/N]
p - °~ h(x,y) C

N-i N-i
2H(uv) h(xy)2cos[27(ux + vy)/NI

N x=O y=O

: . 1 N-l N-i

H(u,v) = Z h(x,y)cos[27r(ux + vy)/N 0 < u,v < NI (17)N. x=O y=O

Using this formulation of the Fourier transform causes all of the equations in
the small convolution mask generation method to involve real terms only and causes
the resulting masks to also have real terms.

Many filters are also symmetric about both the u and v axes [1]. Mathematically,
this is expressed as H(u,v) = H(u,-v) and H(u,v) = H(-u,v). These symmetries imply
h(xy) = h(x,-y) and h(x,y) = h(-x,y), respectively. Making use of these symmetries
and the periodicity of the finite discrete Fourier transform [1], the number of
terms in the transform equation can be reduced by a factor of 4. The Fourier
transform equation is then

" IN N.N

H(u,v) = h(0,0) + h(, O)cos(nu) + h(O, )cos(wv) + h( , )cos[r(u + v)]

N
N uN

+2 2 [h(O,y)cos(27vy/N) + h( ,y)cos[271(- + vy)/N]]

y= 1

+2 [h(x,O)cos(27ux/N) + h(x, )cos[2m(ux + /N]]

N N

+4 2 2 h(x,y)cos[27T(ux + vy)/N 0 < u,v < N (18)
y1l x1l

Using this final version of the transform equation in the matrix formulation of
* 'i the convolution mask generation method, the filter H can be stored in N2/4
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locations, the convolution mask h' in n2/4 locations, and the matrix C in N2n2/16
locations (the matrix is now N2/T x n2/4). For n =9 and N =64, the-matrix C
now requires 20736 locations as compared to 331776 locations required previously,
a substantial saving.

hK IV. EXPERIMENTAL RESULTS -

First-order lowpass and highpass Butterworth filters were selected to illus-
* trate the technique discussed in the previous sections. This covers two comple-

mentary techniques that are commonly used for imaqe enhancement; the lowpass
filter reduces noise and blurs edges while the highpass filter enhances noise
and sharpens edges. An inverse first order Butterworth lowpass filter was
selected to give a good comparison of how the spatial and Fourier techniques
do at reversing the effects of a previously applied filter (inverse filtering).
A rectangular notch filter was also used to filter horizontal periodic striping
in FLIR images. The resolution for all filters was 64 x 64 (N = 64). 9 x 9

* masks were generated (n = 9). The matrix C is thus 1024 x 25 elements.

Figure 1 compares a 9 x 9 mask convolution to the equivalent Fourier filtered
-result of a lowpass filter. Figure 2 compares the two techniques for inverse
-filtering. Note how, in both figures, the mask convolution results tend to have

less of an effect than the Fourier filtered results. This seems to be true
regardless of the filter selected, and it is due to the fact that we are only
approximating the filtering process.

As a more practical illustration of the technique, Figure 3(a) shows a FLUR
image corrupted by periodic interference, visible as horizontal stripes in the
picture. This periodic interference manifests itself in the Fourier spectrum

* as energy bursts along the vertical axis, as shown in Fig. 4(a). The removal of
-. these bursts can be achieved by the notch filter shown in Fig. 4(b). The inverse

of the filtered Fourier transform is shown in Fig. 3(b). Note that, for all
practical purposes, the degradation has been removed. The equivalent spatial

* process using a 9 x 9 mask is shown in Fig. 3(c), which still has a mild degree
of striping due to the fact that the mask was not large enough to properly approxi-
mate the frequency-domain filter. A second pass of the mask (Fig. 3(d))
accomplishes removal of the stripes at the expense of some smoothing of the
image.
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(a)

-,(b) 
(c)

Figure 1. (a) Original test picture. (b) Fourier filtered result
obtained with a first order Butterworth lowpass
filter with a 3 dB point of 4 pixels. (c) 9 x 9-mask convolution of l(a). The mask was generated
from the filter used in 1(b).

243

IL
K

'. ;-~

-.: , . . ,. -. .., .. . .. . .. . , . . -, ,; . , . -, , ,, , , - . - - , ,., ., . . .
.-. .. . ... . .



(a)()

(C)

Figure 2. (a) Original test picture. (b) Fourier-filtered
result obtained using a first order Butterworth
lowpass filter with a 3 dB point of 8 pixels.-

'4 (c) Fourier filtered result using the inverse of
the filter used in 2(b). This gives back the
original image plus a little spottiness due to
round off error in the transform process. (d) 9 x 9
mask convolution result. The mask was generated

* from the filter used in 2(c).
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l(e)

-p-

4-(b) 
?".

Figure 4. (a) Fourier spectrum of the image shown""
in Fig. 3(a). (b) Use of a notch filter
to remove energy bursts associated with.'
the horizontal periodic interference. .-
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AGENDA

PATTERN ANALYSIS IN THE MARINE ENVIRONMENT
I PAME

March 24-26, 1982

Wednesday, March 24

0800 - 0830 Registration Coffee and Danish
* 0830 - 0845 Welcome James E. Andrews, Technical Director, NORDA

0845 - 1145 Session 1 Image A.ialysis Techniques 1
Chairman: Robert M. Brown, Pattern Analysis
Laboratory, NORDA

RECENT TRENDS IN IMAGE ANALYSIS .... Azriel Rosenfeld, University
of Maryland

A CLUSTER ANALYSIS PROGRAM FOR IMAGE SEGMENTATION....Melvin
F. Janowitz, University of 1,4assachusetts

INFORMATION CONTENT OF OCEAI SURFACE WAVE PATTERNS .... Robert
SC. Beal, Applied Physics Laboratory, Johns Hopkins University

SYNTACTIC APPROACH TO SIGNAL AND IMAGE ANALYSIS... .K.S. Fu,
Purdue Unive'sity

1145 - 1330 Lunch under the trees - Cypress House Pavillion
1330 - 1630 Session 2 Pattern Analysis Techniques

Chairman: Robert Ehrlich, University of South
Carolina

GRAIN SHAPE ANALYSIS--A MULTILEVEL PATTERN RECOGNITION
PROCEDURE FOR TRACKING DEEPWATER BOTTOM CURRENTS .... Robert
Ehrlich, University of South Carolina

FUZZY ALGORITHMS FOR PATTERN RECOSN ITION. ...James C. Bezdek,
Utah State University

THE EXTENDED CABFAC/QMODEL FAMILY OF ALGORITHMS - A MULTIVARIATE
PATTERN CLASSIFICATION SCHEME .... William E. Full, University of

* South Carolina

* HIGH-SPEED PROCESSING OF ZOOPLANKTON SAMPLES....Arthur D.
Poularikas, University of Rhode Island, Luther E. Bivins, Office

of Ocean Technology and Engineering Services, NOAA, Mark Berman,
University of Rhode Island

.l.O0 - 1900 Soci~l - Terrace Room, Diamondhead Country Club
1900 - 2100 Dinner and Address: THE OCEAN SCIENTIST'S VIEW OF PATTERN

AfNALYSIS . . . . James E. Andrews, Technical Director, NORDA
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Thursday, March 25

0800 - 0830 Late Registration Coffee and Danish
0830 - 1130 Session 3 Space Technology for Ocean Applications

Chairman: James R. Edberg, Jet Propulsion
Laboratory, California Institute of Technology

ON OBSERVING THE OCEANS AND SEA ICE WITH A SPACEBORNE IMAGING
RADAR-THE SEASAT SYNTHETIC-APERATURE RADAR (SAR) .... Lee-Lueng Fu,
Jet Propulsion Laboratory, California Institute of Technology

*THE USE.OF SATELLITE OBSERVATIONS OF THE OCEAN SURFACE IN
• COMMERCIAL FISHING OPERATIONS .... Donald R. Montgomery, Jet Propulsion
* , Laboratory, California Institute of Technology

AN ENERGY THEOREM AND ITS RELATIONSHIP TO SIGNAL CHARACTERIZA-
TION .... Richard C. Heyser, Jet Propulsion Laboratory, California
Institute of Technology

DIGITALLY CONTROLLED SONARS .... George Hanseq., Jet Propulsion Lab-
oratory, California Institute of Technology

APPLICATION OF COMPUTER IMAGE PROCESSING TO UNDERWATER SURVEYS....
Peter Paluzzi, McQuest Marine R & D Company Ltd. Burlington, Ontario,
Canada

* 1130 - 1330 Lunch under the tree - Cypress House Pavillion
1330 - 1630 Session 4 Ocean Patterns in Space-Time

Chairman: Ramesh Jain, Wayne State University

OCEAN ACOUSTIC MULTI-PATH IDENTIFICATION AT LOIG RANGE....

Mike Brown, University of California at San Diego

SEA SURFACE TEM.!PERATURE ANALYSIS .... William H. Gemmill, National

Weather Service, NOAA

POTENTIALS FOR PATTERN RECOGNITION IN PHYSICAL OCEANOGRAPHY ....
Albert W. Green, Physical Oceanography Branch, NORDA

DYNAMIC SCENE ANALYSIS .... Ramesh Jain, Wayne State University

1630 Shrimp Boil Buffet - Cypress House Pavillion

-.

.2.

j,

J @ •

"' "' " " ' ,..." ' " " . ' '. " ", ,"-" . - . -2 """"- . -. "" '..-'.'- . "- € ,.. ' . ' .,..



-T~ VV

Friday, March 26

0800 - 0830 Coffee and Danish
0830 - 1130 Session 5 Image Analysis Techniques II

Chairman: Rafael C. Gonzalez, University of
Tennessee

IMAGING ROUGH SEAFLOOR; AN ANALOGY TO OPTICS... .Clarence Clay,
University of Wisconsin-Madison

PRELIMINARY RESULTS FROM SEAMARCII .... Joseph F. Gettrust,
University of Hawaii

FLUCTUATION SPECTRUM OF OCEANIC STRUCTURE .... Ronald J. Holyer,
Remote Sensing Branch, NORDA .

ATMOSPHERIC CORRECTION OF CZCS DATA BY THE METHOD OF PRINCIPAL
COMPONENTS.... Ronald J. Holyer, Remote Sensing Branch, NORDA

SPATIAL TECHNIQUES FOR ENHANCEMENT AND RESTORATION OF INFRARED
IMAGES .... Rafael C. Gonzalez, University of Tennessee

1130 Workshop Adjourns
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A CLUSTER ANALYSIS PROGRAM FOR IMAGE SEGMENTATION

Melvin F. Janowitz, Ph.D.
Department of Mathematics and Statistics
University of Massachusetts
Amherst, Massachusetts 01003

..

Abstract

A description will be given of an unsupervised program for the detection of
regions of uniform brightness in remote sensing data. The program is based

% in part upon histogram analysis, and in part upon the "scatter" of the various
,. . regions in the picture. There is a statistic built into the program that

enables the computer to automatically determine the proper number-of regions
in the picture. The program is illustrated with some concrete examples,
and an application presented for the rapid automatic detection of objects
of interest in a remote sensing picture. The operation of the program with
noisy data will also be examined by taking remote sensing data, and addino
varying amounts of normal and uniform noise to it.

DR. MIELVI.N F. JANOWITZ earned a BA from the University of Vinnesota in 1950,

with a major in mathematics and a minor in physics. In 1963 he earned a
Ph.D. in mathematics from Wayne State University.

Dr. Janowitz's professional experience includes: assistant professor, Univer-
sity of Nlew Mexico, 1963-1968; Associate Professor, Western Michigan University,
1966-1967; Associate Professor, University of Massachusetts, 1967-1970;
Professor, University of tMassachusetts, 1970 to present; Assistant Dean,
Faculty of Natural Sciences and Mathematics, University of Massachusetts,
1979 to present.

Having published over 30 papers in lattice theory, mathematical models for
cluster analysis, Dr. Janowitz's research interests include: lattice theory,
algebraic theory of semigroups, cluster analysis, image segmentation, classi-
fication of plants and animals by means of cluster analysis.
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INFORMATION CONTENT OF OCEAN SURFACE WAVE PATTERNS

Robert C. Beal
Applied Physics Laboratory
Johns Hopkins University
Laurel, Maryland 20707

Abstract

Gravity waves traveling on the ocean surface behave according to well established
kinematic and dynamic laws of physics. During its typical life cycle, for
example, a wave train grows from a small amplitude higher frequency ensemble into
a large energy fully developed spectrum extending over several octaves in
frequency. In time, dispersion causes a spatial separation of the longer wave
components and, aided by loss mechanisms, the initially broad spectrum degener-
ates into a narrow band swell. The nearly monochromatic swell is subject to
changes in wave number and direction according to the action of. local currents

~ or finite depth.

* By examining the spatial evolution of ocean wave spectra measured by the Seasat
synthetic aperture radar, information regarding

~-~* (1) storm generation sources,
(2) deep ocean and coast currents, and
(3) coastal bathymetry may be extracted.

Pattern analysis methods Applied in spectral domain may be useful in the optimal
extraction of this information.

F: *.
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SYNTACTIC APPROACH TO SIGNAL AND IMAGE ANALYSIS

K. S. Fu
School of Electrical Engineering

* Purdue University
West Lafayette, Indiana 479-7

Abstract

Syntactic approach to pattern analysis is introduced. Primitive selection and
structural (or syntax) analysis are described. Methods for recognizing noisy
and distorted patterns are discussed. Applications of the syntactic approach

* to signal and image analysis are illustrated by examples.

M.
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*", GRAIN SHAPE ANALYSIS -- A MULTILEVEL PATTERN RECOGNITION

PROCEDURE FOR TRACKING DEEPWATER BOTTOM CURRENTS

Robert Ehrlich
Department of Geology
University of South Carolina
Columbia, SC 29208

Abstract

Strong deepwater bottom currents can move quartz sand and silt for hundreds or thousands
of kilometers. Away from the boundaries of such currents, the sediments are dominantly
of "local" derivation. Because the shape of a quartz grain reflects the grain's origin
and transport history, this differential provenance of local and distal sources can be
detected via quartz shape analysis. Such analysis involves optimization of all parts

* of an image analysis/pattern recognition data analytical scheme. --

Individual two-dimensional shapes are digitized from microscopic imagery and edges
located on a microprocessor-based video analyzer of our own design. The 200-1000
edge points per grain are reduced to 48 points spaced equangularly about the grain
centroid and 24 terms (harmonics) of a finite Fourier series in polar form are calculated.
Each sample consists of 200 or more particles such that a distribution of the frequency-
of-occurrence of amplitudes in various class intervals are generated for each harmonic.
Class intervals are of variable width based on information theoretic concepts whichV result in frequency counts arrayed in a manner to produce maximum information. The
amplitude array (frequencies per class interval) is evaluated at each harmonic in terms
of normalized average entropy (NAE). Harmonics with low NAE display the most contrast
between samples. Data at such harmonics are selected for further analysis (NAE serves
as a feature extractor).

The subsequent data-analytic steps are relevant to any spectral/multichannel data set.
* Frequency counts from each class interval from a chosen harmonic constitute a multivariate

data set for the final stage in the analysis. Using vector-analytic techniques the
sample set can be examined in terms of its configuration in data space: whether the
data from a series of discrete tight clusters or whether the data array is "smeared
out". In the latter case each sample can be described as a mixture of a small number
of end members. The algorithms EXTENDED CABFAC/FUZZY QMODEL are designed to determine

S.. mixing proportions and end member compostions. Successful unmixing of collections of
grain shapes is verified by SEM imagery of grains from selected samples which shows
that each end member consists of grains of1 distinctly different origin.

,2 til
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FUZZY ALGORITHMS FOR PATTERN RECOGNITION

James C. Bezdek
Mathematics Department
Utah State University
Logan, Utah 84322

Abstract

This paper surveys some available techniques based on fuzzy sets for several problems
- of current interest in pattern recognition and image processing. In particular, we

consider some fuzzy approaches for clustering, feature selection, classification, and
shape analysis.
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THE EXTENDED CABFAC/QMODEL FAMILY OF ALGORITHMS-

MULTI VARIATE PATTERN CLASSIFICATION SCHEME

Departmentam E. Full
Depatmen ofGeology

-:~ .'University of South Carolina
Columbia, SC 29208

Abstract

Many problems in pattern recognition involve multivariate data sets; for instance, a
S collection of amplitudes in the frequency domain, chemical analysis, Fourier transfor-

mations of shapes, and so forth. Generally the number of variables per data point are
high (for example, 5-50+). Because each variable represents a reference axis, the data
can be envisioned as being plotted in a data space of dimension equal to the number of

% variables. It has been shown that many classification problems can be reduced by de-
duction of the geometrical character of the multidimensional data array. Individual

* . multivariate elements can be clasified in terms of membership in one or more clusters,
or relative position within a data cloud. However, only when the number of variables
are three or less can we correctly visualize the nature of the data array. When the
number of variables (dimensions) of the data are four or more, additional tools must

* be used to visualize the nature of the data. For instance, often times even though
the data space has high dimensionality, the data themselves are analyzed in a config-
uration of much lower dimensionality (for example, all the data may be clustered at
? ne point in a plane). Furthermore, the data themselves may be smeared out ur grouped

* in several clusters in the data space. Determining the nature of the data in such terms
is critical to-any model we may have for our data. For instance, if the data does
group, then a clustering model may be appropriate; if the data are smeared in a space
of lower dimensionality than that of data space, a mixing model may be apropos.

The EXTENDED CABFAC-QMODEL family of algorithms [EXTENDED CABFAC (EC), QMODEL (QM),
£EXTENDED QMODEL (EQM), FUZZY QMODEL (FQM)] are algorithms which attempt to answer such

questions. The EC algorithm, via vector analysis, determines the proper number of
dimensions wherein the data array may truly lie (often much less than the number of
variables) and provides a set of new reference axes for this "reduced" space. The
determination of the proper number of dimensions for this reduced space is accomplished
by the following thrr", step procedure: 1) locate all of the original points in a

* series of reduced spaces from the original measurement space by projection using eigen-
vectors; 2) back calculate the corresponding real data in the original measurement
space from the set of projected points in each of the reduced spaces; and 3) compare
the back calculated data to the original data via the coefficient of determination and
determine the proper reduced space to be used in any further analysis.

Within the reduced space, the QM family of algorithms determine the proper classification
scheme (hard clustering, fuzzy clustering, or unmixing). The three QM algorithms (QM,
EQM, FQM) are designed to analyze progressively more complex problems. If a mixing
model is appropriate, QM'is optimal if end members are present in the data set and

*/.. there are few extraneous "outliers". EQM is appropriate for mixing if the end members
* may not have been captured in the data array and there are few extraneous "outliers".
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FQM is appropriate for mixing if the end members may not have been captured in the data
set and the data may be "dirty" (that is, contain extraneous outliers). If the clustering
model is more appropriate, FQM is the appropriate algorithm. The data can be observed
to be clustered by examining the fuzzy cluster memberships as produced by the FQM
algorithm. If these memberships tend to be close to either zero or one, then the data
are clustered. Points with intermediate memberships are indicative of shared components
with at least one other group or end member. Data with intermediate memberships can be
modeled as mixtures while data with extremes in membership should be modeled as clusters.
In each of the above algorithms, the final linear relationships between all of the data
(proportions in terms of unmixing, linear fuzzy memberships in terms of clustering) will -

be produced. In addition, FQM wili provide non-linear fuzzy memberships for the data.

These algorithms have successfully classified sand grain shapes into families of different
origin. In addition, scientifically successful analysis of grain size, gas chromotographic,
and foraminifera imagery has been accomplished.

2-.
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HIGH-SPEED PROCESSING OF ZOOPLANKTON SAMPLES
".

Alexander D. Poularikas
University of Rhode Island

Luther E. Bivins
INOAA, Office of Ocean Technology and Engineering Services

Mark Berman
University of Rhode Island

1

Abstract

Research conducted by the University of Rhode Island (URI) and sponsored by
- the National Oceanic and Atmospheric Administration (NOAA) has demonstrated

that pattern recognition techniques can be utilized to process samples of
ichthyo and zooplankton. The objective is to size, count, and identify within
five minutes the approximately 500 organisms aliquoted from a bongo net tow.
The identification required is to classify each organism into one of the ten
major taxonomic groups of zooplankton found in the North Atlantic. Recent tests
using image processng equipment and algorithms based on simple morphometric

* features of the orgcnisms of interest, enabled 240 preserved organisms to be
'- 'separated into five of the ten major taxonomic groups of interest, with a

recognition success of 95 percent. These tests have demonstrated the feasibility
of using pattern recognition for automated processing of zooplankton. Thus,
preparations are underway to demonstrate the entire automated process in
October of 1983.

_261

'°

%-

-° . . S°

-. .. * . . . . . . .



'%S. .4'•* * . .*.4. .-.

.4*,. .4

ON OBSERVING THE OCEANS AND SEA ICE WITH A SPACEBORNE
IMAGING RADAR - THE SEASAT SYNTHETIC-APERATURE RADAR (SAR)

Lee-Lueng Fu
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

Abstract

The Seasat SAR was an L-band (23.5 cm wavelength) radar which imaged the ocean
surface primarily through Bragg resonant scattering by short gravity waves.
Voluminous imagery was produced of the North Atlantic, the eastern North
Pacific and the Beaufort Sea area of the Arctic Ocean, revealing a wide spectrum

of phenomena occuring on the ocean surface and sea ice: surfaceand internal
waves, current boundaries, eddies, bathymetric features, storms, rainfalls, ice
motions and morphology, etc. Images of each phenomenon category will be presented.
Aspects of the utility of a spaceborne SAR for monitoring ocean and ice variabili-

- ties will be discussed.

: .... :
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* ""U THE USE OF SATELLITE OBSERVATIONS OF THE OCEAN SURFACE IN
COMMERCIAL FISHING OPERATIONS

D.R. Montgomiery
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

Abstract

-. Commercial fishermen are interested in the safety of their crews, boats and gear,
and in making the best catch for their time and money. Rising fuel costs, increased
competition from foreign fisheries, improved knowledge about fish habits and the
new 200-mile economic zone have all had an impact on the U.S. fishing industry. As

•.~. .w " a consequence, the modern fisherman, more than ever, requires reliable and timely
information about the marine environment.

This paper described an experimental program to utilize satellite observation of
*the ocean surface, in conjunction with conventional observations and products, to

prepare special "Fisheries-Aids" charts for daily radio-facsimile .hroadcasts to
..... commercial fishermen. These special fisheries products aggregate a broad set of

ocean observations, including ocean color structure, to depict oceanographic condi-
tions of importance to commercial fishing tactics.

Results to date have shown that improved safety at sea and decreased fuel costs canI be achieved through the app-lied use of these special fisheries charts.

..
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4, AN ENERGY THEOREM AND ITS RELATIONSHIP TO SIGNAL CHARACTERIZATION

Richard C. Heyser
Jet Propulsion Laboratory
California Institute of Technology .
4800 Oak Grove Drive
Pasadena, CA 91109

Abstract

Sound and seismic signals are elastic waves passing through a physical medium. These
waves are initiated through a local departure of energy state from its equilibrium
value. Restoration of equilibrium results in the transmittal of energy density away
from the place of initial disturbance. Interception of this energy density constitutes
a signal describing not only the original source but also the physical elastic
properties of the intervening medium. By invoking conservation of energy, it is
shown that a necessary and sufficient condition exists for such observations of
energy density in spaces of description which are Lebesgue square integrable. Since ""
time domain analysis and frequency domain analysis conform to this condition, some
new insights into signal characterization can be gained. Exampleg'are presented of
real-world applications of this theory.

p.'

MR. RICHARD C. HEYSER received an M.S. degree in Electrical Engineering from
California Institute of Technology in 1954. He is currently a member of the Tech-
nical Staff of the Information Systems Division of JPS. His professional interests
include (a)underwater sonic signal processing utilizing advanced communication tech-
niques, (b)successful development of a system for ultrasonic soft tissue visual-
ization, and (c)development of a medical ultrasonic tomographic reconstruction system.
This work involved application of the new concept of Time Delay Spectrometry to
improve sonic and ultrasonic measurement techniques beyond that possible with con-
ventional technology. His experience in imaging technology includes participation in
the conceptual design, or mission performance of 14 Lunar Imaging (VIDEO) Missions
and all Planetary Imaging (VIDEO) Missions since 1958 to the present. His current
work involves ultrasonic imaging of deep arteries, underwater sound measurements,
imaging of heart valves, ultrasonic sensing of levitated spheres at high temperatures.

264

-*I 264

..............................................................S ** -



DIGITALLY CONTROLLED SONARS

George Hansen
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

Abstract

Operational and side scan sonars have been developed at the Jet Propulsion Laboratory
as part of the Advanced Ocean Development Test Platform. The AOTDP is a deep ocean
survey submersible using digital command, control, and data retrieval. The sonars are

&all controlled by digital comnmands entered from a CRT terminal keyboard. All echos
recei'ved by each sonar are digitized and processed within the submersible or trans-
mitted to the surface as part of the telemetry data stream.

Quantitative recordings of the operating parameters of the sonars are made along
with the amplitude and phase of the echos received by the side scans. The para-
meters of the other sonars are also recorded by the surface system.

The sonar functions that are digitally controlled and parameters recorded are the
carrier frequency, time varying gain curve, constant gain, pulse power, risetime,
duration and envelope. Six envelopes or pulse shapes are presently available for use.

* The system software presents the available options for the different sonars in menu
form on the CRT. The operator can select the parameters to be changed and trans-

S mitted to the sonar at the next pulse time and these parameters will remain in force
until altered. The designed' operation of the sonars has 1.een verified in several
sea trials.
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THE IDENTIFICATION OF ACOUSTIC MULTIPATHS AT LONG RANGE IN THE OCEAN

Michael G. Brown
Institute of Geophysics & Planetary Physics, A-025
University of California, San Diego
La Jolla, California 92093

Abstract

Due to the presence of the ocean sound channel, in general many ray paths (multi-
paths) connect a fixed acoustic source and a separate fixed receiver in the ocean.
The number and structure of the multipaths depend on the details of the sound
channel and the positions of the source and the receiver. As each multipath
samples the ocean differently, each contains unique information about the (sound
speed) structure of the ocean. In order to exploit this information one must
first identify each of the measured multipath arrivals. This is the problem
addressed here. Several examples of successful identification are shown; these
rare based primarily on travel time information. The utility of othKer informationis also discussed.

MICHAEL G. BROWN received a Ph. D. in Oceanography from the University of California,
San Diego in 1982. He is currently with the Institute of Geophysics and Planetary
Physics at that university. His research interests are in acoustic wave propagation
in the ocean and geophysical inverse problems.
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APPLICATION OF COMPUTER IMAGE PROCESSING TO UNDERWATER SURVEYS

Peter R. Paluzzi
Image Processing Laboratory

California Institute of Technology
Pasadena, California 91109

Unlike exploration involving spacecraft images, seafloor exploration has not
extensively employed computer image processing. The images created by bottom cameras
and side scan sonars have not been previously acquired digitally. Today, the number
of digital data collection systems has grown and existing capabilities to analyze
the data have not kept pace with that growth. To this end, image processing
techniques have been applied to three types of images used in marine geology: bottom

* photographs, side scan sonar records, and bathymetric data recast as an image.

Photographs of the sea floor are often beset by strong illumination gradients.
Because of these gradients, it is troublesome to print the photographs and still
preserve detail in all portions of the scene. The computer can suppress illumination
gradients using a digital filter that passes only the finer details of a scene and
not the broad changes in illumination. This is particularly important when joining
adjacent images to make mosaics. Bottom photographs computer processed in this way
can sustain stronger contract enhancements in order to adequately display important
features.

Side scan sonar records also have illumination gradients; however, these
gradients arise from the attenuation of echos at increasing ranges. The same digital
filtering technique used with photographs effectively suppresses this illumination

* gradient in the sonar images. In addition, side scan sonar images possess
distortions owing to the slant-range geometry and the ship's speed. Techniques used
to geometrically rectify spacecraft images for camera and perspective distortion
have immnediate application for correcting side scan sonar images. Navigation data
has been used to further correct side scan sonar images for trackline distortion.
Once trackline is corrected and registered to a cartographic reference system,
adjacent sonar images can be mosaicked and further rectified into a standard map
projection.

* Although not traditionally displayed as an image, bathymetric data can be
processed using computer image processing techniques. Individual soundings and
profiles can be rendered into an image by interpolating and regridding the data. The
resulting surface is displayed using digital surface shading techniques. Topographic
data sets that are available in a gridded format (e.g. the Global Topographic
Dataset) can be shaded without interpolation. These digital terrain models are
images of a sort and, being so, can also be rectified into a standard map
projection.

iperspective view as if seen from the window of an airplane or a spacecraft. This
capability allows the interpreter to move above and about the terrain to see a
representation of the sea floor without the necessity of diving in a submersible or

* draining away the oceans.
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PETER R. PALUZZI

Mr. Paluzzi currently supervises all image and data processing activities for
McQuest Marine Research & Development Company Limited. He received an M.S. in remote
sensing geology from the University of Southern California in 1979 and a B.S. in
geology from the State University of New York at Albany in 1973. For the past eight
years, he has been a senior computer image processing analyst at the Jet Propulsion
Laboratory (JPL) of the California Institute of Technology. While at JPL, he planned
and implemented image and data processing activities for the JPL undersea technology
program. From 1979 to 1981 he was sciene and image processing advisor for the JPL
Advanced Ocean Technology Development Platform Project (AOTDP). In addition, he has
computer processed side scan sonar images collected on surveys of the sunken U.S.S.
Hamilton on Lake Ontario. Prior to his work dealing with the computer processing of
side scan sonar images, he was involved in image processing for JPL terrestrial
remote sensing projects. These projects employed digital images from the Landsat
Multispectral scanner, NOAA Very High Resolution Radiometer, and the Skylab S-192
scanner.
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SEA SURFACE TEMPERATURE ANALYSIS

William H. Gemmill
National Meteorological Center
National Weather Service, NOAA
Camp Springs, MD 20232

Abstract

The Ocean Services Group at the National Meteorological Center has been developing
and improving oceanographic products with emphasis on coastal and off-shore ocean
regions adjacent to the U.S. These products serve as "real-time" guidance to
Ocean Service Units of the National Weather Service as well as members of the mari-
time community.

Over the past several years, a concentrated effort has been devoted to sea surface
temperature (SST) and ocean feature analyses. Four types of analyses are now being
prepared on a routine basis; 1) objectively prepared global SST analyses, 2) objective-
ly prepared regional SST analyses, 3) subjectively prepared regional ocean feature

banalyses, and 4) subjectively prepared coastal SST analyses.

The objective analyses are a "blend" of in-situ SST observations obtained from ships,
fixed buoys, drifting buoys and XBT's, and satellite derived measurements. The sub-
jective analyses require the interpretation of high-resolution satellite imagery
along with in-situ measurements.

SEach of the products has its' own scale and pattern that is being displayed.

MR. WILLIAM H. GEMMILL received a M.S. degree in Meteorology from Pennsylvania State
University in 1963.

Between 1963-1975, he was employed by NAVOCEANO in Suitland, Maryland. There he
worked as a physical oceanographer dealing with ASW problems. Much of the work was
carried out using large-scale computer systems.

Since 1975, he has been working at the National Meteorological Center in the Ocean
Services Group, involved in improving and developing ocean services, especially, for
the Coastal and Off-shore areas adjacent to the U.S. coastline.
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POTENTIALS FOR PATTERN RECOGNITION IN PHYSICAL OCEANOGRAPHY

A.W. Green
Naval Ocean Research and Development Activity
Ocean Science and Technology Laboritory
NSTL Station, MS 39529

Abstract

* Types of data collected by physical oceanographers are described in terms5 of space-
time variability. Some examples of possible applications of pattern recognition

* - to detect and describe physical hydrodynamic events in the oceans are given. The
*examples include: recurrent structures in oceanic variables caused by internal

gravity waves; surface wave patterns resulting from nonlinear wave interactions;
thermal patterns associated with oceanic eddies; interleaving of water types in
ocean fronts. Ocean dynamics dictate that the "patterns" of events constantly
change, so that the algorithms for pattern recognition in the oceans must usual ly
be "adaptive" in order that the spatial-and temporal changes of the pattern occuring

'S.. during sampling can be tracked.

DR. ALBERT W. GREEN received his Ph.D. in Physical Oceanography at Massachusetts
Institute of Technology in 1969. He is currently the head of the Physical Oceano-
graphy Branch, Naval Ocean Research and Development Activity. Before coming to
NORDA he was an assistant professor of Atmospheric and Oceanic Science, University
of Michigan. His research interests are in the development of methods for measure-
ment of high frequency-high wave num'ber internal gravity waves, experimental analysis
of strongly nonlinear surface waves, processes governing generation of mesoscale

- eddies and waves in the ocean. .
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DYNAMIC SCENE ANALYSIS

Ramesh Jain
Intelligent Systems Laboratory
Department of Computer Science
Wayne State University

."Detroit, Michigan 48202

4 Abstract

Understanding of a complex dynamic scene requires integration of diverse knowledge
sources at different levels. Ina dynamic scene analysis system the peripheral
processes may be used to extract information useful in constraining combinatorial
explosion at subsequent levels. A partial segmentation of the scene may be
obtained using domain independent knowledge sources. This segmentation step
partitions the scene based only on intrinsic characteristics of surfaces appearing
in the scene. A complete segmentation and then analysis of the scene can be
performed by a cooperative effort of domain specific and domain independent

S-.knowledge sources. This paper presents an overview of a system called Vili,
based on the above approach. Some experimental results will also be presented.

DR. RAMESH JAIN is an associate professor of Computer Science at Wayne State Univ-
ersity. His current research is in the area of computer vision with emphasis on
dynamic scene analysis, shape from shading, the use of Knowledge in vision, and the
application of artificial intelligence to industrial engineering and computer graphics.
He was formerly employed by the Indian Institute of Technology, Kharagpur, India, the
University of Hamburg, Germany, and the University of Texas at Austin.

Jain received his Ph.D. in Electronics and Electrical Communication Engineering from
lIT, Kharagpur, in 1975.
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FLUCTUATION SPECTRUM OF OCEANIC STRUCTURE

Ronald J. Holyer
Remote Sensing Branch
Naval Ocean Research &

Development Activity
NSTL Station, MS 39529

Abstract

Present day satellite infrared and visible sensors permit investigation of meso-
scale ocean features such as fronts, eddies and plumes. In addition to these
visually apparent features, a part of the temperature/color field must be con-
sidered as random and containing some other information which can only be retrieved
by statistical analysis - e.g., the spectral density of variance. The measured
spectral density of variance, E(k)=k*Exp(-n), or alternatively the structure
function, results in an n valve which can be compared with turbulence theories
which predict n valves ranging from one to five. Spectral analysis-of LANDSAT
data south of Iceland is presented to suggest that pattern recognition techniques
could possibly be more fully merged with physical oceanography to gain new in-
sight into turbulent flow in the mixed layer.

.. The Coastal Zone Color Scanner (CZCS) images the earth's oceans in five visible/near-
IR spectral bands. In the visible portion of the electromagnetic spectrum, satellite
observed radiance typically consists approximately 90% of atmospheric backscatter
and 10% of ocean scattered radiance. Subtle color signatures associated with oceanic
features are frequently masked by this atmospheric path radiance. Accurate atmo-
spheric correction of CZCS data is, therefore, a prerequisite to optimum information
extraction from this imagery. The most widely accepted atmospheric correction
scheme for CZCS data, based on a single scattering model of the atmosphere plus

-' " certain assumed optical properties of the ocean, has several inherent drawbacks
that limit it's effectiveness. Principal Components Analysis (the KL transforma-

-.'- tion) is offered as an alternate atmospheric correction scheme based upon a
statistical rather than a modeling approach. The Principal Components Method is
applied to two CZCS data sets and a comparison is made with corrections derived by
the modelling method.

MR. RONALD J. HOLYER received his M.S. in Physics from South Dakota School of Mines
and Technology. He is presently employed in the Remote Sensing Branch, Naval Ocean
Research and Development Activity. Mr. Holyer's professional interests are in digi-
tal image processing and the application of remote sensing to oceanographic problems.

I..

272

•or

NL.W * L_ . . . . .



"* .. SPATIAL TECHNIQUES FOR ENHANCEMENT AND RESTORATION OF INFRARED IMAGES

R.C. Gonzalez
University of Tennessee

Abstract

Two methods for image enhancement and restoration in the spatial domain are pre-
*I sented. The first is a noise filtering algorithm based on a least-squares predictive
• " filter. The second technique generates a small convolution mask that approximates the

effects of a given frequency-domain filter. Both methods are suitable for real-time
-. implementation.

-: DR. RAFAEL C. GONZALEZ received the B.S.E.E. degree from the University of Miami in

" ' 1965 and the M.E. and Ph.D. degrees in Electrical Engineering from the University of
Florida, Gainesville, in 1967 and 1970, respectively.

He has been affiliated with the GT&E Corp., the Center for Information Research at
the University of Florida, NASA, and is presently IBM Professor of Electrical
Engineering and Computer Science at the University of Tennessee, Knoxville.

Dr. Gonzalez is co-author of the books Pattern Recognition Principles, Digital
Image Processing, and Syntactic Pattern Recognition: An Introduction, all pub,U lished by Addison-Wesley. He is an associate editor for the IEEE Trans. on Systems,
Man and Cybernetics and the International Journal of Computer and Information Sciences.
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The following abstracts are for papers invited by the PAME WJorkshop Chairman and
presented at the Pattern Recognition Session of the Third bienniel Society of
Exploration Geophysicists/U.S. Navy Symposium, March 23, 1982, just preceeding
this workshop.
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ACTIVITIES AT THE UNIVERSITY OF HOUSTON'S ALLIED GEOPHYSICAL LABORATORIES
WITH A SUMMARY OF NEW DEVELOPMENTS IN 3D DISPLAY DEVICES

H. Roice Nelson, Jr.
General Manager

Allied Geophysical Laboratories

Abstract

This presentation will briefly review the history and plans of the Allied Geophysical
Laboratories (AGL) at the University of Houston. The AGL consists of 5 independent
industry supported research labo-atories. Research at the AGL is evaluating the full
spectrum of reflection seismology, with emphasis on 3D seismic techniques. These
laboratories presently include the Field Research Laboratory (FRL), the Seismic
Acoustics Laboratory (SAL), the Keck Research Computation Laboratory (RCL), the
Cullen Image Processing Laboratory (IPL), and the Well Logging Laboratory (WLL).

There is a good equipment base valued at over $2.0 million. The main processor is
a VAX 11/780 that is directly tied to Cybernet and specifically to a CDC-205 vector
processor in Minneapolis. Other significant equipment includes the SAL physical

U modeling tank and controlling ComMand computer, a Tektronix 4081 intelligE-t term-
inal, an Adage 4145 vector refresh graphics system with a raster segment generator,
and a SpaceGraph vibrating mirror 3D display device. Each laboratory is respon-
sible for their own funding and there is a total annual budget for 1982 of about
$1.5 million.

A brief summary of the research activities of each of these 5 laboratories will be
presented. There will also be examples of how research under way at the AGL ties
into the themes of the SEG/USN symposium on Shear Waves and the workshop on Pattern
Recognition.

Because the primary emphasis at the AGL is in studying 3D seismic techniques, there
*has been a careful evaluation of display techniques that can be used to evaluate

three-dimensional volumes of data. A summary of the results of this evaluation
will be presented as an introduction to new research tools for pattern recognition.
The techniques used to display 3D data volumes that will be described include:
a toy made with a pair of parabolic mirrors; projection imaging techniques; auto-
stereoscopic and synthalyzer film display devices; beam splitting techniques; a
device based on rotating LED's; and varifocal or vibrating mirror devices. Although

*scientists in many different fields are interested in developing a useable 3D display
there has not been a completely satisfactory answer developed. The problems with
holographic displays are an example of how 3D display techniques can be oversold,
before an acceptable solution is developed.
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WATER MASS CLASSIFICATION IN THE ORTH ATLANTIC USING .
-q%

IR DIGITAL DATA AND BAYESIAN DECISION THEORY

', *.Robert Coulter
Naval Oceanographic Office 0
NSTL Station, MS 39529

Abstract

A method is described which utilizes Bayesian (maximum likelihood) decision theory
and historical statistics of sea surface temperature to classify surface water
masses and detect ocean surface fronts from satellite-derived infrared data. Pro-
babilities that certain features occur are determined from the probability
distributions of specific statistical characteristics, known a priori, and the a'.

same characteristics, computed from the data. The better the match between the a
priori information associated with a feature and the computed statistics, the
higher the probability will be that the feature exists. The maximum probability,
as determined by Bayes' theory, is subject to two tests, based on absolute and
relative threshold values, to reduce the chance of incorrect classification.
The method was used for classifying both airborne and satellite IR data to locate a..

the Gulf Stream surface front. The results are compared to frontal positions ob-
tained by conventional means.

MR. ROBERT E. COULTER received his B.S. degree in Engineering at Florida State Univ-
ersity. He obtained his M.S. degree in Physical Oceanography at Texas A & rI University.
He is presently employed at the Fleet Aplications Department of the Naval Oceanographic .
Office. Prior to this, he held positions with the firm of A.H. Glenn and Associates
and with the Mississippi State University Research Center in conjunction with the NOAA
Data Buoy Office. Mr. Coulter's professional interests include automated, sea surface
wave measurement, environmental data quality control, and the automatic interpretation
of infrared satellite data for oceanographic applications.
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UTILIZATION OF SIDE SCAN SONAR FOR SEA FLOOR CLASSIFICATION

Carey Ingram
Naval Oceanographic OfficeNSTL Station, MS 39529

Joseph N. Suhayda
Department of Civil Engineering
Louisiana State University
Baton Rouge, LA 70802

Abstract

N .Side scan sonar imagery of the sea floor may be likened to the subaerial imagery
produced by side-looking airborne radar, typically providing swath coverage of up
to half a kilometer to each side of a survey vessell's transit path.. At the present
time, interpretation of sonar imagery is a laborious process culminating in quali-
tative classification of bottom sediment types and morphological features. The
application of pattern recognition technology currently used in radar image inter-
pretation could significantly automate the processing of sonar data. Examples of
the state of the art in sonar imagery and interpretation will be presented.

- MR. CAREY INGRAM received his B.S. in Geology from the George Washington University
and holds a Master's degree in Marine Science from the Virginia Institute of iarine
Science at The College of William and Mary. He currently manages the Marine Geolo-
gical Laboratory of the Naval Oceanographic Office. His current professional interests

, include automation of analytical procedures in the laboratory, the development of
more efficient instrumentation for real-time sea floor classification, and in-situ
measurement of physical and acoustical properties in marine sediments.

DR. JOSEPH SUHAYDA received his B.S. in Physics from California State University
at Northridge and holds the Ph.D. in Physical Oceanography from the University of
California at San Diego. He is currently an Associate Professor in the Department
of Civil Engineering at Louisiana State University. His current professional interest

* is in the geotechnical properties of sea floor sediments, with a subsidiary interest
in attendent geoacoustic properties.
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